
Lecture 16: Equations of motion of a two-level atom interacting with a quantized

electromagnetic field

• Heisenberg’s equations of motion

• Markov approximation

Heisenberg’s equations of motion: Now that we have an idea about the basic structure

behind quantizing the electromagnetic field in the presence of sources, we can look at some

simple, but nevertheless important, examples. In this lecture, we will be looking at the

interaction of a two-level atom with the quantized electromagnetic field. All studies of the

dynamics of interactions have to begin with the Hamiltonian which we write, on recalling

Eqs. (2.18) and (15.9), as

Ĥ =
�

λ

�ωλâ
†
λâλ +

1

2
�ωAσ̂z −

�
σ̂†Ê(+)(rA) · d+ h.c.

�
. (16.1)

Here we have introduced the operators σ̂ ≡ |g��e| and σ̂z ≡ |e��e| − |g��g| where |g� and |e�,

the eigenstates of the Hamiltonian of the free atom, denote the ground and excited states of

the two-level atom, respectively. The atomic transition frequency ωA is just the difference

between the corresponding eigenfrequencies ωe and ωg. Note that we kept in Eq. (16.1) only

the resonant (energy-conserving) terms of the interaction Hamiltonian.

The atomic flip operators fulfil the algebra of angular momentum operators. To see

that, we form the linear combinations σ̂x = σ̂ + σ̂† = |g��e| + |e��g| and σ̂y = i(σ̂ − σ̂†)

= i(|g��e| − |e��g|). These operators then obey the commutation rules

[σ̂i� σ̂j ] = 2i�ijkσ̂k � i� j� k ∈ {x� y� z} . (16.2)

Other useful commutation rules are

[σ̂� σ̂z] = 2σ̂ �
�
σ̂†� σ̂z

�
= −2σ̂† �

�
σ̂� σ̂†

�
= −σ̂z . (16.3)

The equations of motion of the atomic and photonic mode operators can be obtained

from Heisenberg’s equations of motion which, for an arbitrary operator Ô, read

˙̂
O =

1

i�

�
Ô� Ĥ

�
. (16.4)

For the operator σ̂z (the ‘population inversion’ operator), we obtain

˙̂σz =
1

i�

�
σ̂z� Ĥ

�
=

i

�
Ê(+)(rA) · d

�
σ̂z� σ̂

†
�

+ h.c. (16.5)
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which, on using the commutation rules (16.3) for the atomic operators, becomes

˙̂σz =
2i

�
σ̂†Ê(+)(rA) · d+ h.c. . (16.6)

Similarly, we obtain for the atomic flip operator,

˙̂σ =
1

i�

�
σ̂� Ĥ

�
= −

i

2
ωA [σ̂� σ̂z] +

i

�

�
σ̂� σ̂†

�
Ê(+)(rA) · d (16.7)

which, on using the relations (16.3), becomes

˙̂σ = −iωAσ̂ −
i

�
σ̂zÊ

(+)(rA) · d . (16.8)

Finally, for the photonic mode operators we get [recall the mode expansion for the electric

field, Eq. (2.13)]

˙̂aλ = −iωλâλ +
ωλ

�
A∗λ(rA) · d∗σ̂ . (16.9)

The three equations (16.6), (16.8) and (16.9) are the basis of everything that follows from

now on. They are coupled differential operator equations and not solvable in closed form.

Instead, we have to resort to approximations.

Markov approximation: We can attempt to solve Eq. (16.9) by formally integrating it,

âλ(t) = e−iωλtâλ +
ωλ

�
A∗λ(rA) · d∗

t�

0

dt� e−iωλ(t−t�)σ̂(t�) . (16.10)

The first term in Eq. (16.10) is the free evolution of the photonic mode operator whereas

the second term describes the influence of the interaction. The temporal integral is of course

tricky since we do not know the temporal evolution of the atomic flip operators. Nevertheless,

we can approximate the integral using the rotating-wave approximation in which we assume

that the flip operators consist of a slowly varying part and a rapidly oscillating contribution

that evolves with ωA [see Eq. (16.8)], σ̂(t�) = ˜̂σ(t�)e−iωAt� . Then we take the slow envelope

˜̂σ out of the integral at the upper time t and replace it with its full operator function,

˜̂σ(t) = eiωAtσ̂(t),

t�

0

dt� e−iωλ(t−t�)σ̂(t�) =

t�

0

dt� e−iωλ(t−t�)e−iωAt� ˜̂σ(t�)

≈ ˜̂σ(t)

t�

0

dt� e−iωλ(t−t�)e−iωAt� = σ̂(t)

t�

0

dt� ei(ωA−ωλ)(t−t�) . (16.11)
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Such an approximation in which information of past times has been erased and only infor-

mation about the present time is kept is also called the Markov approximation.

The integral itself can be easily solved and gives

t�

0

dt� ei(ωA−ωλ)(t−t�) =
sin(ωA − ωλ)t

ωA − ωλ

+ i
[1 − cos(ωA − ωλ)t]

ωA − ωλ

≡ s(ωA − ωλ) + ic(ωA − ωλ)

which we have for convenience split into its real and imaginary parts. The function s(ωA−ωλ)

is sharply peaked at ωA = ωλ (see Fig. 22). Away from this value it oscillates rapidly. If all
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FIG. 22: Functions s(x) = sinx/x (left figure) and c(x) = (1− cosx)/x (right figure) showing how

they can be approximated by the functions πδ(x) and P(1/x), respectively.

quantities that contain this function are averaged (or cannot be resolved) over sufficiently

long times, then s(ωA −ωλ) can be replaced by πδ(ωA −ωλ) whereby introducing only little

error. Similarly, the function c(ωA −ωλ) can be replaced by P(ωA −ωλ)−1 where P denotes

the principal value.

If we insert the formal solution (16.10) in the Markov approximation back into the mode

expansion for the electric field we get

Ê(+)(rA� t) = Ê
(+)
free(rA� t) + i

�

λ

ω2
λ

�
[Aλ(rA) ⊗A∗λ(rA)] · d∗σ̂(t) [s(ωA − ωλ) + ic(ωA − ωλ)]

(16.12)

where Êfree(rA� t) denotes the freely evolving electric field operator. Finally, we insert

Eq. (16.12) into the equations of motion for the atomic operators and we obtain

˙̂σz = −Γ (1 + σ̂z) +
2i

�
σ̂†Ê

(+)
free(rA) · d−

2i

�
σ̂Ê

(−)
free(rA) · d∗ (16.13)
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and

˙̂σ = −i(ωA + δω)σ̂ −
Γ

2
σ̂ −

i

�
σ̂zÊ

(+)
free(rA) · d . (16.14)

Here we have defined the symbols

Γ =
2π

�2

�

λ

ω2
λ|Aλ(rA) · d|2δ(ωA − ωλ) (16.15)

and

δω =
1

�2

�

λ

P

�
ω2

λ

ωA − ωλ

�

|Aλ(rA) · d|2 (16.16)

whose significance we will discuss soon.

The Eqs. (16.13) and (16.14) are effective equations of motion for the atomic flip operators

which do not depend on the photonic variables anymore. The operators Ê
(+)
free(rA) describe

freely evolving fields such as external laser fields that are used to manipulate the atom.
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Lecture 17: Spontaneous decay and the Lamb shift

• Spontaneous decay

• Lamb shift

• Modified spontaneous decay

Spontaneous decay: We have seen that, after employing the Markov approximation to

eliminate the photonic variables, the equation of motion of the population inversion operator

in the absence of any external electromagnetic fields reads

˙̂σz = −Γ (1 + σ̂z) . (17.1)

Recall that σ̂z = |e��e| − |g��g| and that the identity operator in the atomic Hilbert space

is just Î = |e��e| + |g��g|. Hence, the projection operator onto the excited state is |e��e| ≡

σ̂ee = (Î + σ̂z)/2 and Eq. (17.1) can be written as

˙̂σee = −Γσ̂ee (17.2)

with the solution

σ̂ee(t) = e−Γ(t−t�)σ̂ee(t
�) . (17.3)

If the atom at some initial time t� had been prepared in its excited state |e�, it will decay

into its ground state |g� on a time scale 1/Γ. Hence, we call Γ is the rate of spontaneous

decay. It is important to note that the atom will lose its excitation despite the fact that

there is no driving field. However, the atom is coupled to the electromagnetic vacuum which,

as we have seen earlier, is a state of infinite energy with a certain amount of fluctuations

contained in it. Let us follow this line of thought further and rewrite the spontaneous decay

rate (16.15) as

Γ =
2π

�2

�

dω d · �0|Ê(+)(rA� ω) ⊗ Ê(−)(rA� ωA)|0� · d∗ (17.4)

where the electric-field strength operators have to be evaluated at the atomic transition

frequency. Equation (17.4) tells us that the rate of spontaneous decay is proportional to the

strength of the vacuum fluctuations of the electromagnetic field. In other words, we can say

that spontaneous decay is actually stimulated emission driven by the vacuum fluctuations

of the electromagnetic field. Therefore, the process of spontaneous decay is proof of the

existence of the quantum vacuum.
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The spontaneous decay rate can be easily computed from the plane-wave expansion in

which case Eq. (16.15) becomes

Γ =
2π

�2

�

λ

ω2
λ|Aλ(rA) · d|2δ(ωA − ωλ)

=
2π

�2

�

σ

∞�

0

ω2dω

c3(2π)3

�

dΩ
�ω

2ε0

|eσ · d|
2δ(ωA − ω)

=
ω3

Ad
2

3π�ε0c3
� (17.5)

where σ labels the two possible orthogonal polarizations and dΩ is the solid angle.

Note that the spontaneous decay rate can alternatively be computed by using Fermi’s

Golden Rule which states that the transition probability per unit time from a state |ψi� to

a continuum of states |ψf� in an infinitesimally small energy interval (E − dE�E + dE) is

pi�→f = (2π/�)|Vfi|
2ρf (E) . (17.6)

This result follows from standard first-order time-dependent perturbation theory. The ma-

trix element Vfi of the perturbation is nothing but the dipole moment matrix element, and

the density of final states, ρf (E), has to be associated with the strength of the vacuum

fluctuations of the electromagnetic field.

Lamb shift: When going back to the effective equation of motion for the transition opera-

tors σ̂, Eq. (16.14), which in the absence of external fields reduces to

˙̂σ = −i(ωA + δω)σ̂ −
Γ

2
σ̂ � (17.7)

we note that the atomic transition frequency ωA has been altered to ωA + δω with δω being

given by Eq. (16.16). This so-called Lamb shift is also purely a vacuum effect. The Lamb

shift is measurable by high-precision spectroscopy. Table II summarizes experimental data

for the hydrogen atom taken from [M. Weitz, A. Huber, F. Schmidt–Kaler, and T.W. Hänsch,

Phys. Rev. Lett. 72, 328 (1994)]. The Nobel Prize in Physics 2005 was awarded, amongst

others, to Theodor W. Hänsch for his contributions to high-precision spectroscopy.

Our calculations imply that the ‘bare’ atomic transition frequency ωA is not measurable in

an experiment because the atom is always coupled to the quantized electromagnetic vacuum

and thus always experiences the Lamb shift. What we call ωA would be the transition

frequency calculated quantum-mechanically for an isolated atom. Note, however, that our
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atomic level in hydrogen Lamb shift δω/MHz

1S1/2 8173.12

2S1/2 1045.043

2P1/2 -12.8354

4S1/2 131.6804

TABLE II: Lamb shift δω for particular levels of the hydrogen atom.

simplified calculations would not result in the measured data shown in Table II as we have

neglected non-rotating terms.

In addition to the Lamb shift, the off-diagonal elements of the atomic density matrix

decay, but with the rate Γ/2, exactly half the rate than the excitation itself.

Modified spontaneous decay: Let us return to the expression (17.4) for the spontaneous

decay in terms of the vacuum fluctuations of the electric field. This relation can be used to

generalize the theory of spontaneous decay from free space to situations in which the quan-

tized electromagnetic field is modified by the presence of dielectric materials. In connection

with the Casimir effect we realized that boundary conditions change the structure of the

quantum vacuum, and we can expect spontaneous decay properties to change as well. As a

simple example, let us consider an atom in front of an ideal mirror. The two-level atom can

be viewed as a dipole that can be oriented in different ways with respect to the mirror (see

Fig. 23).
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FIG. 23: A dipole (at z > 0) in front of a mirror generates an image (at z < 0). Depending on the

dipole orientation, the spontaneous decay rate changes as z → 0.

If the dipole in oriented in z-direction, i.e. perpendicular to the mirror surface, the dipole

and its image effectively form a dipole with double its original strength when brought close

to the mirror. In contrast, a dipole oriented parallel to the mirror surface, the two dipole
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cancel one another when they come close. In this case, the spontaneous decay drops to zero

as z → 0. Close here means that the distance z is smaller than the wavelength of the atomic

transition, z � λA = 2πc/ωA.

Reality, however, is very different. There exists no ideal mirror, each metal has a finite

resistivity. If an atom comes close to a metallic surface, it can lose its excitation due to short-

range van der Waals interaction to the vast amount of dipoles that make up the mirror. The

Coulomb interaction of a single dipole falls off at a distance r as 1/r3, and therefore the

interaction energy between two dipoles falls off as 1/r6. Summing, or rather integrating, over

the volume of the mirror material, leaves one with an effective interaction energy and 1/z3

which swamps the effects that we have described above to the extent that the suppression

of spontaneous decay for a z-oriented dipole has never been observed.

Add­on: In order to describe the effect of dielectric materials on spon-

taneous decay, we would need a theory of the electromagnetic field in

dielectrics. Without giving any proof, such a theory can be quantized as

well, and its vacuum fluctuations are determined by the imaginary part

of the Green tensor as

�0|Ê(r� ω) ⊗ Ê†(r�� ω�)|0� =
�ω2

πε0c2
Im G(r� r�� ω)δ(ω − ω�) .

This is an instance of the linear fluctuation-dissipation theorem which

states that the correlations of a fluctuating quantity are related to the

imaginary part of the causal response function.

The modified spontaneous decay rate then reads

Γ =
2ω2

A

�ε0c2
d · Im G(rA� rA� ωA) · d (17.8)

where rA and ωA are the location and the transition frequency of the atom,

respectively. Needless to say that, when the Green tensor of free space,

G
(0)(r� r�� ω), is used, the free-space decay rate (17.5) is recovered. In all

other cases, the expression (17.8) can be used to determine the effect of

the presence of dielectric bodies or metals on the decay properties of a

two-level atom.
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