
Lecture 11: Application: The Mach–Zehnder interferometer

• Coherent-state input

• Squeezed-state input

Mach-Zehnder interferometer with coherent-state input: Now we apply our knowl-

edge about quantum-state transformations to interferometry where we are interested in

phase differences. A common example that is also known from classical optics is the Mach–

Zehnder interferometer in which two beam are split at one beam splitter and later recombined

at another beam splitter (see Fig. 16). Any phase difference that the two beams might have

picked up between the two beam splitters will appear as an interference pattern.
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FIG. 16: A Mach–Zehnder interferometer consists of two symmetric beam splitters BS1 and BS2

and two detectors D1 and D2. Light in one arm of the interferometer experiences a phase shift ϕ.

In our first example, let us consider the case where the two inputs of the first beam

splitter are prepared in a coherent state |α� and the vacuum state |0�, respectively. Hence,

|ψin� = |0� α� . (11.1)

Assuming a symmetric beam splitter, its transmission matrix is
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After the first beam splitter, the quantum state has transformed into

|ψin� = |0� α� �→
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The phase shift in the lower arm will cause the coherent amplitude to be replaced by α2 �→

eiϕα2. Hence, the quantum state transforms into
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Finally, the second beam splitter reverses the transformation (11.3) and produces a state

|ψout� =
�
�
�
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eiϕ + 1

�
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2

�
eiϕ − 1

��
. (11.5)

These three steps are pictorially represented in Fig. 17 as a series of phase-space snapshots.

FIG. 17: The input state is a product of a coherent states (blue) and the vacuum state (red). The

effect of the beam splitters and the phase shifter is to displace the coherent states in phase space.

In the Mach–Zehnder interferometer, one is interested in the difference of the two pho-

tocurrents at the outputs. We have seen before in connection with homodyne tomography

that this current gives information about the phase difference between the two interferometer

arms. From Eq. (11.5) we find that

�Ô� = �n̂1� − �n̂2� = |α|2 cosϕ . (11.6)

Moreover, the phase error we make by measuring the difference current can be estimated by

the error propagation formula

Δϕ =
�ΔÔ�
�
�
�
∂�Ô�
∂ϕ

�
�
�
. (11.7)

For the Mach–Zehnder interferometer we find that

Δϕ =
1

|α|| sinϕ|
(11.8)

and therefore the minimum value is Δϕmin = 1/|α| for ϕ = π/2 which is the working point

of the interferometer. Because |α| =
�
�n̂�, the phase error decreases with the intensity of

the coherent input field as in the classical interferometer.

Mach-Zehnder interferometer with squeezed-state input: Let us now assume that

one of the input ports of the Mach–Zehnder interferometer was not prepared in the vac-

uum state, but in the squeezed vacuum state |ξ�. Although we could use the input-output
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relations as before, the resulting quantum state would look rather complicated. However,

because we are dealing with Gaussian states, their respective Wigner functions must be

Gaussian functions as well and are thus easier to handle.

Recall that theWigner function for a single-mode coherent state |α0� and for the squeezed-

vacuum state can be written as [recall Eqs. (7.5) and (7.7)]
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Let us now define the vector of quadratures as λ = (α�
1� α
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T and the displacement

vector as d = (α�
0� α

��
0� 0� 0)

T . Then, the Wigner function (11.9) can be written in the compact

form
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is the (inverse of the) covariance matrix. Since a beam splitter, by Eq. (9.14), acts linearly

on the quadrature components, we can write it as a matrix transformation λ �→ � · λ.

Similarly, the phase shifter acts as λ �→ Φ · λ where both matrices are given by
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The quadrature components then transform under the action of the Mach–Zehnder in-

terferometer into λ �→ λ
� = (� ·Φ ·�) · λ which in turn means that the covariance matrix

V has changed into

V �→ V
� = (� ·Φ ·�)T · V · (� ·Φ ·�) (11.13)

and the displacement vector into d �→ d� = (� · Φ · �) · d. Inserted into the Wigner

function (11.9) we obtain the Wigner function of the quantum state after passing through

the interferometer as

Wout(α1� α2) =
4
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T ·V �·λ+2d�T ·λ+2λ
T ·d� . (11.14)
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Recall that the Wigner function can be used to compute the expectation value of any

(symmetrically ordered) operator [Eq. (7.8)], for example,
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The powers α∗m
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1 can be obtained by multiplying the Wigner function with a factor

e(jT ·λ+λT ·j)/2, differentiating with respect to the elements ji an appropriate number of times

and setting j = 0 at the end of the calculation. For example, the expectation value of the
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In the last step, we have performed the Gaussian integration.

What remains is to compute the difference current �n̂1� − �n̂2� and the phase error esti-

mate. To do so, we must not forget that the Wigner function can only be used to compute

expectation values of symmetrically ordered operators. Thus, we have to convert all oper-

ators into their respective symmetrically ordered form by using the commutation relation

[â� â†] = 1 [see Eq. (2.12)]. We find that
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The differentiation with respect to ji is best done using some computer algebra program.

The result is that, at the working point ϕ = π/2, the phase error is

Δϕmin =
(sinh2 ξ + α�2

0 e2ξ + α��2
0 e−2ξ)1/2

| sinh2 ξ − |α0|2|
. (11.18)

If we assume that α�
0 = 0 and α��

0 � e4ξ which is usually the case, then the phase error is

approximately

Δϕmin �
e−ξ

|α��
0|

. (11.19)

Compared with the coherent-state input, the phase resolution increases by a factor of eξ

which makes squeezed states a highly valuable resource in interferometry. A particular

example includes gravitational-wave detection [J. Gea-Banacloche and G. Leuchs, J. Mod.

Opt. 34, 793 (1987)].
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Lecture 13: Conditional linear-optical networks

• Principles of quantum-state engineering

• Designing unitary operations

Principles of quantum-state engineering: Beam splitters and phase shifters are used

to apply unitary transformations to a given quantum state. This immediately restricts

the class of final states one can reach, given that the class of initial states is in general

limited (if it wasn’t, then there would be no need for elaborate transformations). Typically,

available resources consist of coherent states produced by lasers, squeezed states produced

by parametric processes in some nonlinear crystals, and single-photon Fock states from

atomic emission processes. But what if, for some reason, one needs a state that is a coherent

superposition of photon-number states, such as

|ψ� = c0|0�+ c1|1�+ c2|2�+ . . . � (13.1)

given the finite resources mentioned above? For a general set of coefficient ci, the state

(13.1) cannot be produced by unitary transformations of the above-mentioned set of states.

The additional, non-unitary, element that has to be added to achieve the desired transfor-

mation is a projective measurement such as a photon counting measurement. Let us assume

that we are given a coherent state |α� and a single-photon Fock state |1�. We overlap both

at a beam splitter with (complex) transmittivity T and reflectivity R and project one output

onto the vacuum state (Fig. 19).
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|α>

FIG. 19: Principal building block for adding a

photon to a quantum state, here |α�. The beam

splitter is highly transmitting, |T | ≈ 1.
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FIG. 20: Simplest way of building the nonlinear

sign shift gate with three beam splitters and two

additional light modes.
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By projection we mean that we measure the photon number in a photon counter and, by

finding no photon, regard the transformation as successful. However, there are potentially

many possible measurement outcomes out of which one has to be selected. Hence, there

is always a probability of less than one (usually rather small) associated with the correct

measurement result.

The initial two-mode state is |ψ12� = |α1� 12�= D̂1(α)â
†
2|01� 02�. Application of the input-

output relations (9.6) then yields

|ψ12� �→ (Râ†
1 + T ∗â†

2)e
α(T â†

1
−R∗â†

2
)−α(T ∗â1−Râ2)|01� 02� . (13.2)

Projected onto the vacuum state �02| yields the (un-normalized) state

|ψ̃1� ∝ Râ†
1D̂1(Tα)|01� . (13.3)

The probability of obtaining this state, i.e. the probability of finding no photon in the

photon counter, is

p = �ψ̃1|ψ̃1� . (13.4)

If we assume the beam splitter transmittivity to be very large, |T | → 1, then the state (13.3)

is the photon­added state |ψ̃1� ∝ â†
1|α1�. The success probability p, however, because it is

proportional to |R|2 = 1− |T |2, will be very small.

But we see from this example that with conditional state preparation we can effectively

generate non-unitary transformations (such as â†) acting on arbitrary quantum states. This

simple scheme can be generalized to generate arbitrary finite superpositions of Fock states.

Suppose the expansion of the state (13.1) terminates at the Nth Fock state. Then it can be

written as

|ψ� = (â† − α∗
N)(â

† − α∗
N−1) · · · (â

† − α∗
2)(â

† − α∗
1)|0� (13.5)

where the complex numbers α∗
n are the roots of the characteristic polynomial

N�

n=0

cn
√

n�
(α∗)n = 0 .

Recalling how the displacement operator transforms the photonic amplitude operators,

D̂(α)â†D̂† = â† − α∗, the state can be written as a succession of displacement and creation

operators acting on the vacuum state,

|ψ� = D̂(αN)â
†D̂†(αN )D̂(αN−1)â

†D̂†(αN−1) · · · D̂(α1)â
†D̂†(α1)|0� . (13.6)

51



We already know how to generate creation operators by conditional measurements. Dis-

placing a state in phase space is even simpler, one merely has to overlap it with a strong

coherent state at a weakly reflecting beam splitter. With those two ingredients, we have

all the tools in hand necessary to generate arbitrary finite superpositions of photon-number

states [M. Dakna, J. Clausen, L. Knöll, and D.-G. Welsch, Phys. Rev. A 59, 1658 (1999)].

Designing unitary operations: Although beam splitters generate unitary operations,

they cannot generate any conceivable unitary operation. For example, it is impossible to

find a beam splitter of a set of beam splitters and phase shifters that can provide the trans-

formation

c0|0�+ c1|1�+ c2|2� �→ c0|0�+ c1|1� − c2|2� . (13.7)

This transformation is indeed unitary as it preserves the norm of the state. Since it is a

single-mode state, the only optical element that realizes unitary operations is a phase shifter

which can only generate transformations to states c0|0�+ eiϕc1|1�+ e2iϕc2|2� which does not

contain the transformation (13.7).

To solve this problem, we can use similar tricks as in quantum-state engineering. However,

the engineering is at a higher level in that we are not content with producing a particular

quantum state, but we aim to generate a unitary transformation that it exactly the same for

a whole class of quantum states specified by the coefficients {c0� c1� c2}. For this purpose, let

us look at the beam splitter network depicted in Fig. 20. It consists of three beam splitters

whose reflectivities are assumed to be real (we use the phase convention that reflection

from the top of BS2 and from the bottom of BS1 and BS3 induced a sign change). The

transformation is said to be successful if the two detectors find a single photon and the

vacuum state, respectively.

In principle, we could now use our knowledge of general quantum-state transformations

to find the transformed output state and determine the beam splitter transmittivities from

that. There is, however, a simpler method by adding up all the probability amplitudes of

all paths leading to one photon in the upper detector and no photon in the lower detector

[T.C. Ralph, A.G. White, W.J. Munro, and G.J. Milburn, Phys. Rev. A 65, 012314 (2001)].

Suppose no photon enters the network from the state |ψ�. Then there are two ways how the

auxiliary photon can end up in the upper detector, by reflecting off all three beam splitters

or by passing through BS1 and BS3. The total probability amplitude for this to happen is
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therefore
√

p = R1R2R3 + T1T3 . (13.8)

If one photon comes in from |ψ�, either this photon or the auxiliary photon must leave

the network through the open output port. The probability amplitude for the sum all these

possibilities must be the same as (13.8) because it should be state-independent. Hence, it

must be
√

p = R1R3T
2
2 − R2(R1R2R3 + T1T3) = R1R3T

2
2 −

√
pR2 (13.9)

where we used Eq. (13.8). Therefore, we find that

√
p =

R1R3T
2
2

1 + R2

. (13.10)

Finally, if two photon arrive at the network from |ψ�, two photons from either |ψ� and/or

the auxiliary photon must leave through the open output port. The probability amplitude

is now −
√

p because we want to realize the transformation (13.7) which reads

−
√

p = −2R1R2R3T
2
2 + R2

2

√
p . (13.11)

Combining Eqs. (13.10) and (13.11) yields a condition for the reflectivity of BS2 as

R2
2 = (

√
2− 1)2 . (13.12)

Maximizing the success probability p over the other two beam splitter angles yields

pmax = 1/4 for R1 = R3 = (4 − 2
√
2)−1. That is, only in one quarter of all cases will

we find the correct measurement outcome and hence will we have implemented the correct

transformation (13.7). But note again that the success probability is state-independent�

This simple example shows how, in principle, arbitrary unitary transformations can be im-

plemented by conditional measurement scheme using auxiliary photons, beam splitters and

photon counters. Such schemes are extensively investigated in connection with all-optical

quantum information processing and computing.
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