
Lecture 9: The lossless beam splitter

• input-output relations

• quantum-state transformation at beam splitters

Input-output relations: So far, we have characterized important classes of quantum states

in terms of their eigenvalues and eigenvectors, as well as in terms of their photon statistics.

In the following lectures, we will see how one can manipulate quantum states of light with

linear optical elements. In particular, we will concentrate on non-absorbing beam splitters.

If we neglect the three-dimensional character of the electromagnetic fields and focus on one-

dimensional propagation only, we can regard a beam splitter simply as a dielectric plate,

possibly consisting of several different layers (see Figure 11).
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FIG. 11: Simple model of a beam splitter with thickness d, possibly consisting of several layers of

different dielectric materials.

For our purpose, it is enough to consider only a single dielectric plate of thickness d and

restrict ourselves to one particular polarization and propagation along the x-direction. In

this case, the electric-field strength turns into a scalar operator Ê(x) = i
�
dk c|k|A(k� x)â(k)

−i
�
dk c|k|A∗(k� x)â†(k). The Helmholtz equation (1.18) for the (scalar) mode functions

A(k� x) is then an ordinary differential equation

∂2

∂x2
A(k� x) + n2(x)k2A(k� x) = 0 � (9.1)

where the refractive index n(x) is n for −d
2
≤ x ≤ d

2
and 1 for |x| > d

2
. The solutions of this

equation are again plane waves that can be constructed similar to the quantum-mechanical
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FIG. 12: A plane wave eikx with k > 0 (left figure) or k < 0 (right figure) impinges onto a beam

splitter from the left or right, respectively, and splits into transmitted and reflected parts.

wave functions at a potential barrier. If an incoming plane wave eikx from the left (k > 0)

hits the barrier, it will split into a reflected part R(ω)e−ikx and a transmitted part T (ω)eikx

(see Fig. 12). Similar things happen if a plane wave eikx impinges onto the dielectric plate

from the right (k < 0). The reflection coefficient R(ω) and the transmission coefficient T (ω)

depend on the details on the beam splitter. Hence, the mode functions can be written as

A(k� x) =

�
�

4πε0ωA






eikx + R(ω)e−ikx x ≤ −d
2

T (ω)eikx x ≥ d
2

k > 0 � (9.2)

A(k� x) =

�
�

4πε0ωA






T �(ω)eikx x ≤ −d
2

eikx + R�(ω)e−ikx x ≥ d
2

k < 0 � (9.3)

where, in principle, the transmission and reflection coefficients for light impinging onto the

beam splitter from the light or right could be different.

We see from Eqs. (9.2) and (9.3) that the mode functions A(k� x) are decomposed into

incoming and outgoing plane waves. When inserting these mode function back into the

definition of the electric-field strength operator, we might just as well decompose the field

itself into incoming and outgoing waves. If we denote the incoming fields by

Êin(x) = i

∞�

0

dω

�
�ω

4πε0cA

�
eix ω

c â1(ω) + e−ix ω
c â2(ω)

�
+ h.c. (9.4)

and the outgoing field by

Êout(x) = i

∞�

0

dω

�
�ω

4πε0cA

�
eix ω

c b̂1(ω) + e−ix ω
c b̂2(ω)

�
+ h.c. � (9.5)

then, by inspection of Eqs. (9.2) and (9.3), we can relate the photonic amplitude operators
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of incoming and outgoing waves as

b̂1(ω) = T (ω)â1(ω) + R�(ω)â2(ω)

b̂2(ω) = R(ω)â1(ω) + T �(ω)â2(ω)
. (9.6)

We can write the input-output relations (9.6) also in matrix form. Defining the vectors

â(ω) = [â1(ω)� â2(ω)]T and b̂(ω) = [̂b1(ω)� b̂2(ω)]T , Eq. (9.6) turns into

b̂(ω) = T (ω) · â(ω) � (9.7)

where the transmission matrix T (ω) is defined by

T (ω) =

�


T (ω) R�(ω)

R(ω) T �(ω)



 . (9.8)

The transmission and reflection coefficients from both sides are, however, not independent

from one another. Recall that the photonic amplitude operators satisfy bosonic commutation

relations. If this is true for the amplitude operators âi(ω) and â†i (ω) of the incoming fields,

the same must hold for those of the outgoing fields, b̂i(ω) and b̂†i (ω). The commutation

relations impose constraints on the range of values that the transmission and reflection

coeffients can take. In particular, we find that

�
b̂1(ω)� b̂†1(ω)

�
:= 1 = |T (ω)|2 + |R�(ω)|2 � (9.9)

�
b̂2(ω)� b̂†2(ω)

�
:= 1 = |T �(ω)|2 + |R(ω)|2 � (9.10)

�
b̂2(ω)� b̂†1(ω)

�
:= 0 = T ∗(ω)R(ω) + R

�∗(ω)T �(ω) . (9.11)

From these relations we see that both magnitudes and the phases of the coefficients are

constrained. Equations (9.9) and (9.10) imply that the total probability of transmitting or

reflecting a photon is always unity. This expresses photon-number conservation (or energy

conservation) at a lossless beam splitter. The phase relation (9.11) implies that |T | = |T �|

and |R| = |R�|. Finally, a solution to Eq. (9.11) is obtained if we set R� = −R∗ and T � = T ∗,

so that the transmission matrix takes the final form

T (ω) =

�


T (ω) R(ω)

−R∗(ω) T ∗(ω)



 . (9.12)

Note that the transmission matrix is unitary which reflects energy conservation, and that

its determinant is detT (ω) = 1. Mathematically, this means that T (ω) ∈ SU(2).
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Quantum-state transformation at beam splitters: We have seen so far how the pho-

tonic amplitude operators transform at a beam splitter. The resulting input-output relations

(9.6) can be used to derive a simple rule how to transfrom quantum states. We have noted

previously in connection with the Wigner function, that the density operator �̂ can be re-

garded as an operator function of the photonic amplitude operators âi(ω) and â†i (ω), �̂in ≡

�̂out[â(ω)� â†(ω)]. If we are now given such a density operator that depends functionally on

the amplitude operators of the incoming fields, â(ω) and â†(ω), then we have to replace

those with the amplitude operators of the outgoing fields, b̂(ω) and b̂†(ω), to obtain the

transformed density operator. This means that the transformed density operator reads

�̂out

�
â(ω)� â†(ω)

�
= �̂in

�
T

+(ω) · â(ω)�T T (ω) · â†(ω)
�
� (9.13)

where we have used the inverse transformation to Eq. (9.6). Hence, the transformation of

the quantum state (in the form of the density operator), Eq. (9.13), is the inverse of the

transformation of the photonic amplitude operators (9.6).

Transformation of the Wigner function: Finally, we will see how the Wigner function

transforms at a beam splitter. Recall that it is defined for single-mode fields as W (α) =

Tr[�̂δ̂(â−α)]. Because we need two (spatial) modes to describe the effect of a beam splitter,

the definition of the Wigner function has to be extended to cover this situation. This is done

by defining a two-dimensional vector α = [α1� α2]
T and writing W (α) = Tr[�̂δ̂(â−α)].

If we denote the Wigner function of the incoming two-mode quantum state by Win(α)

and the Wigner function of the outgoing quantum state by Wout(α), they are related by

(ω-dependence suppressed for notational convenience)

Wout(α) = Tr
�
�̂out

�
â� â†

�
δ̂(â−α)

�

(9.6)
= Tr

�
�̂in

�
T

+ · â�T T · â†
�
δ̂(â−α)

�

�̂�→� ·�̂
= Tr

�
�̂in

�
â� â†

�
δ̂(T · â−α)

�

α�→�
�·α

= Tr
�
�̂in

�
â� â†

�
δ̂(â−T+ ·α)

�

= Win(T
+ ·α) . (9.14)

Hence, the Wigner function transforms in the same way as the density operator, namely

with the inverse of the transformation matrix T(ω). Intuitively, this must be so because

the Wigner function and the density operator contain the same information and are trans-

formable into one another.

38



Lecture 10: Examples of quantum-state transformations

• Coherent states, homodyne detection

• Number states, Hong–Ou–Mandel quantum interference

Quantum-state transformation of coherent states: The first and simplest example of

a quantum-state transformation is obtained by looking at the situation where the incoming

radiation field is prepared in a two-mode coherent state |α� ≡ |α1� α2�. The density operator

of the two-mode coherent state can then be written as

�̂in = |α��α| = D̂(α)|0� 0��0� 0|D̂†(α) � (10.1)

where D̂(α) ≡ D̂(α1)D̂(α2) is the two-mode displacement operator which, by inspection of

Eq. (5.1), is an operator function of the amplitude operators â and â†. If we write D̂(α) as

D̂(α) = eα
T ·�̂†−α

�·�̂ � (10.2)

we can apply the quantum-state transformation formula (9.13) to it and replace â by T
+ · â

and â† by T
T · â†. This is equivalent to replacing α by T ·α since

eα
T ·�T ·�̂†−α

�·��·�̂ = e(� ·α)T ·�̂†−(� ·α)�·�̂ . (10.3)

This transforms the displacement operator into D̂(T ·α) and we obtain

�̂out = |T ·α��T ·α| = |Tα1 + Rα2�−R∗α1 + T ∗α2��Tα1 + Rα2�−R∗α1 + T ∗α2| � (10.4)

which says that a two-mode coherent state transforms into another two-mode coherent state

with their coherent amplitudes changed according to the input-output relations (9.6),

α�1 = Tα1 + Rα2 �

α�2 = −R∗α1 + T ∗α2 .

This relation shows yet again why the coherent states can be regarded as those quantum

states that have classical counterparts because classical light would behave exactly as in

Eq. (10.4). The classical amplitudes would independently transform according to the rules

set by classical optics, and so do the coherent amplitudes of a coherent state. Other quantum

states, however, will behave completely differently as we will see later.
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Balanced homodyne detection: Let us now return to the beam splitter transformation

(9.6) and see what happens to the photon number at the output ports of the beam splitter.

From (9.6) we easily calculate

b̂†1b̂1 = (T ∗â†1 + R∗â†2)(T â1 + Râ2) = |T |2â†1â1 + |R|2â†2â2 + T ∗Râ†1â2 + TR∗â†2â1 �

b̂†2b̂2 = (−R∗â†1 + T ∗â†2)(−Râ1 + T â2) = |R|2â†1â1 + |T |2â†2â2 − T ∗Râ†1â2 − TR∗â†2â1 .

(10.5)

Let us now assume that we have a 50% : 50% beam splitter with T = |T |eiϕT , R = |R|eiϕR

and |T | = |R| = 1/
√

2. Moreover, let the radiation field in input mode 2, the so-called local

oscillator, be prepared in a coherent state |αL� with αL = |αL|e
iϕL. Then, the difference

between the expectation values of the photon numbers in the output ports of the beam

splitter is

�b̂†1b̂1� − �b̂†2b̂2� = |αL|�â1e
i(ϕT−ϕR−ϕL) + â†1e

−i(ϕT−ϕR−ϕL)� = |αL|�x̂(ϕ)� (10.6)

with ϕ = ϕT − ϕR − ϕL. Since the current in a photodiode is proportional to the num-

ber of photons impinging on it, the lhs of Eq. (10.6) represents the difference of the two

photocurrents at the detectors D1 and D2 (see Fig. 13).

a2

a1 D1

D2

FIG. 13: Scheme of a balanced homodyne detection set up. A local oscillator in a coherent state

|αL� and an unknown quantum state impinge on a 50� : 50 beam splitter.

The photocurrent difference gives then, via the rhs of Eq. (10.6), information about the

phase-rotated quadrature of the signal mode 1. The phase ϕ can be adjusted by tuning the

phase ϕL of the local oscillator. In this way, we obtain information about all phase-rotated

quadratures of the signal state. This is the principle behind balanced homodyne detection

which is used to reconstruct quantum states of the radiation field. [Note that we only derived

that the mean values of the photocurrents give information about the expectation value of
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the quadrature component. However, it can be shown that for a strong local oscillator

the complete quadrature statistics p(x� ϕ) is measured from which the Wigner function and

hence the density operator can be reconstructed.]

Quantum-state transformation of number states: We will now turn to the transfor-

mation of quantum states that do not have any classical counterparts, namely the number

states. Let us assume that the radiation field was initially prepared in a product state of

two single-photon Fock states, |ψin� = |1� 1�. On using the transmission matrix (9.12), we

obtain for the transformed state

|ψout� = â†1â
†
2|0� 0�

= (T b̂†1 − R∗b̂†2)(Rb̂†1 + T ∗b̂†2)|0� 0�

=
�
TR(b̂†1)

2 − T ∗R∗(b̂†2)
2 +

�
|T |2 − |R|2

�
b̂†1b̂

†
2

�
|0� 0�

=
√

2TR|2� 0� −
√

2T ∗R∗|0� 2�+
�
|T |2 − |R|2

�
|1� 1� . (10.7)

In contrast to the previous example, the quantum state (10.7) is not a product state any-

more. In particular, for a symmetric beam splitter, the |1� 1�-contribution we had initially

started with, vanishes completely. This is a result of quantum interference in which proba-

bility amplitudes and not the probabilities add themselves up. In case of a symmetric beam

splitter, we can visualise the possible paths that the two photons can take (see Fig. 14).

The two photons, here labelled in green and red colours (despite their indistinguishability),
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FIG. 14: Different pathways two indistinguishable photons impinging on a beam splitter can take.

can end up both at the same detector [cases (a) and (b)] or at different detectors [cases (c)

and (d)]. However, in case (d) a phase shift of π occurs due to reflection from an inter-

face, and hence the amplitudes of (c) and (d) cancel each other. This is the origin of the

Hong-Ou-Mandel quantum interference effect.

Imagine the incoming photons were classical particles (or waves) which would be subject

to the same transmission and reflection coefficients as in Eq. (9.12). Then each of the
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classical particles would be transmitted through the beam splitter with a probability |T |2

and reflected from it with a probability |R|2. We can collect the results for classical and

quantum particles in the following table:

output port 1 output port 2 quantum prob. classical prob.

2 0 2|T |2|R|2 |T |2|R|2

0 2 2|T |2|R|2 |T |2|R|2

1 1 (|T |2 − |R|2)2 |T |4 + |R|4

TABLE I: Probabilities of finding a given number of particles in both output ports of a beam

splitter. Note that both columns associated with quantum and classical particles add up to unity

as they should.

From Eq. (10.7) and Table I we see that for a symmetric beam splitter the output state

is an equal superposition of the states |2� 0� and |0� 2�,

|ψout� =
1
√

2
(|2� 0� − |0� 2�) (10.8)

[assuming T�R ∈ �]. The suppression of the |1� 1�-component in a coincidence measurement

at both outputs is also named Hong–Ou–Mandel dip after the authors who first verified this

effect [C.K. Hong, Z.Y. Ou, and L. Mandel, Phys. Rev. Lett. 59, 2044 (1987)].

FIG. 15: In the original experiment, a bi-photon was created by parametric down-conversion in a

KDP crystal, and the temporal overlap changed by displacing the beam splitter BS. When the two

photons overlap perfectly, the coincidence counts go to zero. Displacing the beam splitter shifts

the spatiotemporal mode profiles of the two photons with respect to each other. The two photons

thus do not overlap perfectly and the coincidence counts increase.
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Lecture 12: Principle of quantum-state reconstruction

• phase-rotated quadrature distribution

• reconstruction of the Wigner function

Phase-rotated quadrature distribution: In a previous lecture, we have seen that, with

the help of a symmetric beam splitter and a strong local oscillator, we can measure the

expectation value of the phase-rotated quadrature x̂(ϕ). Such a procedure is known as

balanced homodyne detection; a signal light field is mixed at a symmetric beam splitter

with a local oscillator prepared in a strong coherent state |αL� with αL = |αL|e
iϕL. The

difference in the expectation values of the photon counts in both detectors (see Fig. 13) is

proportional to the expectation value of x̂(ϕ = ϕT − ϕR − ϕL) [see Eq. 10.6],

�n̂1� − �n̂2� = |αL|�x̂(ϕ)� .

The notion of expectation value (or mean value) implies that, only after many mea-

surements on identically prepared quantum states, we will obtain �x̂(ϕ)� on average. Any

single photodetection will result in a measurement outcome that is very probably not ex-

actly �x̂(ϕ)�. Repeated measurements will yield a probability distribution p(x� ϕ) with mean

value �x̂(ϕ)�, spread �x̂2(ϕ)� and so forth. Knowledge of all moments implies knowledge of

the full probability distribution and vice versa.

Each of these moments �x̂n(ϕ)� can then be calculated from the phase-rotated probability

distribution as

�x̂n(ϕ)� =

∞�

−∞

dx xnp(x� ϕ) . (12.1)

More generally, these moments are generated by an exponential function of the form

�eizx̂(ϕ)� =

∞�

−∞

dx eizxp(x� ϕ) (12.2)

by differentiating with respect to z at z = 0,

�x̂n(ϕ)� = (−i)n dn

dzn
�eizx̂(ϕ)�z=0 . (12.3)

Equation (12.2) is just a Fourier transform and can be inverted to give

p(x� ϕ) =
1

2π

∞�

−∞

dz e−izx�eizx̂(ϕ)� =
1

2π

∞�

−∞

dz e−izx�D̂
�
ize−iϕ

�
� (12.4)
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where, in the last equation, we have used the definitions of the quadrature operator

[Eq. (5.15)] and the displacement operator [Eq. (5.1)].

We have noted back in Lecture 6 that the displacement operator is the Fourier transformed

operator-valued δ function. Hence, we can further write

p(x� ϕ) =
1

2π

∞�

−∞

dz

�

d2α e−izxeizαeiϕ+izα∗e−iϕ

W (α) . (12.5)

The integral over z can now be performed, and after a change of variables and denoting

W (α) ≡ W (α�� α��) we obtain the important relation

p(x� ϕ) =

∞�

−∞

dyW (x cosϕ + y sinϕ�−x sinϕ + y cosϕ) . (12.6)

Equation (12.6) implies that there is a one-to-one relation between the (measurable) phase-

rotated probability distribution and the Wigner function of the quantum state. It also

says that p(x� ϕ) is a marginal probability distribution which is obtained by integrating

the Wigner function along a certain direction in phase space specified by the angle ϕ. For

example, for ϕ = 0, Eq. (12.6) simplifies to p(x� 0) =
�
dyW (x� y), which projects the

Wigner function onto the x-axis.

Reconstruction of the Wigner function: In the same way as we found that the quadra-

ture probability distribution can be obtained from the Wigner function, the Wigner function

can be retrieved from the quadrature distribution. To see this, let us go back to Eq. (12.2)

and write it as

�eizx̂(ϕ)� = Tr
�
�̂D̂

�
ize−iϕ

��
=

∞�

−∞

dx eizxp(x� ϕ) . (12.7)

The displacement operator is the Fourier transform of the operator-valued δ function, hence

Tr
�
�̂D̂

�
ize−iϕ

��
=

�

d2α eα∗γ−αγ∗W (α)

where γ = ize−iϕ. Fourier transforming again leaves us with

W (β) =
1

π2

�

d2γ eγ∗β−γβ∗

∞�

−∞

dx eizxp(x� ϕ) . (12.8)

Transforming the phase-space integration over γ to polar co-ordinates d2γ �→ zdzdϕ, and us-

ing the symmetry relation p(x� ϕ) = p(−x� π−ϕ) which follows from inspection of Eq. (12.6),
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finally obtain

W (β �� β ��) =
1

4π2

π�

0

dϕ

∞��

−∞

dx dz p(x� ϕ)eiz(x−β� cos ϕ+β�� sinϕ)|z| . (12.9)

Equation (12.9) is now our main result. Together with its inverse relation, Eq. (12.6),

it shows that we can reconstruct the Wigner function of a quantum state, and therefore

its density operator, from the phase-rotated quadrature probability distribution p(x� ϕ). If

the quadrature distribution is known for all angles in the interval [0� π], then the Wigner

function is also completely known.
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FIG. 18: Wigner function of a squeezed state with marginal distributions (phase-rotated quadrature

distributions for ϕ = 0 and ϕ = π/2).
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