
Lecture 6: Quantum states in phase space

• classical vs. quantum statistics, quasi-probability distributions

• operator expansion in phase space

Classical vs. quantum statistics, quasi-probability distributions: The phase-space

picture we have developed in the last lecture for coherent and squeezed states is not quite

correct as it cannot account for number states (in fact, all states that are not of Gaussian

form). Here we will derive a proper phase-space picture that allows to associate to each

quantum state, pure or mixed, a unique c-number function in phase space that contains all

information about the quantum state under consideration.

Classical average: For this purpose, let us first recall that the classical statistical average

of a classical quantity X is obtained by integrating the values of X in the phase space

spanned by the complex number α, X(α), with a classical probability distribution function

�X�cl =

�

d2αPcl(α)X(α) . (6.1)

The classical probability distribution function Pcl(α) fulfills all requirements of a probability

density, that is, it is non-negative for all values of α, Pcl(α) ≥ 0, and it is normalized to

unity (Fig. 5). Our goal is to find a relation that bears some similarity to (6.1) for quantum

states.

FIG. 5: Two examples of phase-space distributions. The distribution on the right could be inter-

preted as a classical probability distribution, the distribution on the right cannot. However, it is a

perfectly valid quantum-mechanical quasi-probability distribution.
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Quantum average: Recall that the quantum-mechanical expectation value of an operator

Ô in a pure quantum state |ψ� is calculated as

�Ô�ψ = �ψ|Ô|ψ� .

The quantum state itself, however, could be a (classical) mixture of different pure states

|ψi�, each being associated with a probability pi ≥ 0. For example, we might not be exactly

sure which state our preparation procedure had actually realized. We might have had one

photon in a given mode (with probability p1), or perhaps none at all (with probability p0 =

1−p1). We would then calculate the expectation value of Ô as �Ô� = p0�0|Ô|0�+p1�1|Ô|1�.

In general, we assign to a mixed quantum state a statistical operator (density operator)

�̂ =
�

i pi|ψi��ψi|. With the help of the density operator, the expectation value is now

�Ô�� = Tr
�
�̂Ô

�
� (6.2)

where Tr denotes the operator trace.

Let us now assume that the quantum-mechanical operator Ô is a functional of the pho-

tonic amplitude operators, Ô ≡ Ô(â� â†). The classical analogue of this operator would

be formally obtained if we replaced the operators â and â† by the complex amplitudes α

and α∗, thereby obtaining a function O(α� α∗). We have to be careful how we perform this

replacement since we can write the same operator Ô(â� â†) in different operator orderings

as â and â† do not commute. For example, consider the operator Ô(â� â†) = [x̂(ϕ)]2 where

x̂(ϕ) = âeiϕ+ â†e−iϕ is the quadrature operator. Using the commutation relation [â� â†] = 1,

we can write it in these three different forms:

[x̂(ϕ)]2 = â2e2iϕ +
�
â†

�2
e−2iϕ +

�
ââ† + â†â

�
symmetric order �

= â2e2iϕ +
�
â†

�2
e−2iϕ +

�
2â†â+ 1

�
normal order �

= â2e2iϕ +
�
â†

�2
e−2iϕ +

�
2ââ† − 1

�
anti-normal order . (6.3)

All three expression represent exactly the same operator, but their form differs. In normal

order, all creation operators are to the left of the annihilation operators, in anti-normal

order the creation operators are to the right of them, and in symmetric order they appear

in symmetrized form. From now on we will we concentrate on symmetric operator order.

We now return to the classical function O(α� α∗) and rewrite it identically as

O(α� α∗) =

�

d2β δ(α− β)O(β� β∗) � (6.4)
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where δ(α) is the standard two-dimensional δ function of the complex variable α = α�+ iα��

which we can write in these equivalent forms:

δ(α) = δ(α�)δ(α��) =
1

(2π)2

�

dx dy ei(α�x+α��y)

=
1

π2

�

d2γ eαγ∗−α∗γ =
1

π2

�

d2γ eα∗γ−αγ∗

� (6.5)

where we have defined γ = −(y−ix)/2. Inserting the second form of Eq. (6.5) into Eq. (6.4),

we obtain

O(α� α∗) =
1

π2

�

d2βd2γ e(α∗−β∗)γ−(α−β)γ∗

O(β� β∗) . (6.6)

If we now formally replace the complex amplitudes α and α∗ by the operators â and â†, we

obtain the operator expansion of Ô(â� â†) in symmetric order as

Ô(â� â†) =
1

π2

�

d2βd2γ e(â†−β∗)γ−(â−β)γ∗

O(β� β∗) . (6.7)

The operator

δ̂(â− β) =
1

π2

�

d2γ e(â†−β∗)γ−(â−β)γ∗

=
1

π2

�

d2γ eγ∗β−γβ∗

D̂(γ) (6.8)

is just the Fourier transform of the displacement operator D̂(γ), and it is called the operator-

valued δ function in symmetric order. Finally, if we take the expecation value of both sides

of Eq. (6.7), we find that

�Ô(â� â†)� =

�

d2β W (β)O(β� β∗) � (6.9)

where

W (β) = �δ̂(â− β)� = Tr
�
�̂ δ̂(â− β)

�
(6.10)

is called the Wigner function.

Equation (6.9) has to be compared with the classical equivalent (6.1). Both expressions

look formally the same. The expectation value of both classical and quantum observables

are obtained by averaging the values of the observable in phase space with a distribution

function. The important difference is that the in the quantum case the Wigner function

is in general not a well-defined probability density as it might become negative. However,

the Wigner function is still properly normalized to unity. Yet, it can be used to obtain

expectation values of operators, and is thus called a quasi-probability distribution.
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Operator expansion in phase space: Until now, the analogy between Eqs. (6.1) and

(6.9) was rather formal as we have no precise means of computing the classical function

O(α� α∗). In order to do so, we effectively need to invert Eq. (6.7). For this purpose, we

evaluate Tr[δ̂(â− β)δ̂(â− γ)] in the coherent-state basis which we write as

Tr[δ̂(â− β)δ̂(â− γ)] =
1

π4

�

d2α1d
2α2 e

α1β∗−α∗
1
βeα2γ∗−α∗

2
γTr[D̂(α1)D̂(α2)] . (6.11)

First we note that we only have to compute Tr[D̂(α1)D̂(α2)] which yields

Tr[D̂(α1)D̂(α2)] = Tr
�
eα1â†e−α∗

1
âe−α∗

2
âeα2â†

�
e

1

2
(�α2�2−�α1�2)

= Tr
�
e(α1+α2)â†e−(α∗

1
+α∗

2
)â

�
e

1

2
(�α2�2−�α1�2)

=
1

π

�

d2α �α|e(α1+α2)â†e−(α∗
1
+α∗

2
)â|α� e

1

2
(�α2�2−�α1�2)

=
1

π

�

d2α e(α1+α2)α∗−(α∗
1
+α∗

2
)α e

1

2
(�α2�2−�α1�2)

= πδ(α1 + α2) . (6.12)

Hence, Tr[δ̂(â− β)δ̂(â− γ)]= 1
π
δ(β − γ). This relation can be used to invert Eq. (6.7) as

O(β� β∗) = πTr
�
Ô(â� â†)δ̂(â− β)

�
(6.13)

and the operator expansion can be written as

Ô(â� â†) = π

�

d2αTr
�
Ô(â� â†)δ̂(â− α)

�
δ̂(â− α) . (6.14)

Since Eq. (6.14) holds for all operators, it can also be used to expand the density operator

itself. Recalling that Tr[�̂δ̂(â− α)] =W (α), we obtain

�̂ = π

�

d2αW (α)δ̂(â− α) (6.15)

which is an expansion of the density operator in terms of the operator-valued δ function in

symmetric order and the Wigner function.

Equations (6.10) and (6.15) are effectively mutual inversions. We can interpret this result

as a one-to-one correspondence between the density operator �̂ and the (c-number) phase-

space function W (α). Both contain exactly the same information about the quantum state

of the system. The knowledge of the Wigner function of a quantum state is therefore enough

to specify the quantum state completely.

26



Lecture 7: Examples of Wigner functions

• Number states

• coherent states and squeezed states

• calculation of expectation values using Wigner functions

Wigner function of a number state: In the previous lecture we have seen that the

Wigner function contains all the information of a given quantum state. In other words,

it is an effective tool for visualization quantum states. Let us first consider the number state

|n�. The density operator associated with it is clearly �̂ = |n��n|. Recall from Eq. (6.10)

that the Wigner function is defined as W (α) = Tr[�̂δ(â− α)]. Hence, we have to compute

Wn(α) =
1

π2

�

d2β eαβ∗−α∗β�n|D̂(β)|n� � (7.1)

where we have used the definition of the operator-valued δ function [Eq. (6.8)]. The expec-

tation value of the displacement operator in the number state can be evaluated as follows:

�n|D̂(β)|n� = e−
1

2
�β�2�n|eβâ†e−β∗â|n�

= e−
1

2
�β�2

n�

m=0

(−|β|2)m

(m�)2
�n|(â†)mâm|n�

= e−
1

2
�β�2

n�

m=0

(−|β|2)m

m�

�
n

m

�

= e−
1

2
�β�2Ln(|β|

2) . (7.2)

The function Ln(x) is the Laguerre polynomial of order n. The Fourier transform of it turns

out to be also a Laguerre polynomial of the same order with the result that

Wn(α) =
2

π
(−1)ne−2�α�2Ln(4|α|

2) . (7.3)

What we see from Eq. (7.3) is that for odd photon numbers the Wigner function becomes

negative around the origin of phase space because Ln(0) = 1. Moreover, for all n > 0 the

Wigner function obtains negative values somewhere in phase space. This means that we

cannot interpret the Wigner function as a classical probability distribution which should be

non-negative everywhere. We also see that the Wigner function is bounded by

−
2

π
≤ W (α) ≤

2

π
. (7.4)

This is generally true for Wigner functions of any quantum state which we will not prove.
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FIG. 6: Wigner function of a number state with 4 photons.

An example of the Wigner function for n = 4 is shown in the Fig. 6. We see that it is

rotationally symmetric as it is clear from Eq. (7.3) that the complex amplitude appears only

in the form |α|2.

Wigner function of coherent states and squeezed states: As an example of a non-

negative quasi-probability distribution, we compute the Wigner function of a coherent state

|α0�. Since this is also a pure state, the density operator is simply �̂ = |α0��α0|. The

calculation is rather straightforward and we obtain

W (α) =
1

π2

�

d2β eαβ∗−α∗β�α0|D̂(β)|α0�

=
1

π2

�

d2β e(α−α0)β∗−(α∗−α∗
0
)βe−

1

2
�β�2 =

2

π
e−2�α−α0�2 . (7.5)

Again, the Wigner function is bounded by 2/π, but this time it is a strictly positive function,

namely a Gaussian function centred at α0 (see Fig. 7). If we recall the naive phase-space

picture derived after Eq. (5.16) we see that we can associate the uncertainty area with the

area determined by the width at half maximum of the Gaussian function (7.5).

In order to see that even better, let us look at squeezed states. In particular, we will

compute the Wigner function of the squeezed vacuum state |ξ� = Ŝ(ξ)|0�. To do so, we

will need the expectation value �ξ|D̂(β)|ξ�= �0|Ŝ†(ξ)D̂(β)Ŝ(ξ)|0�. Recall that the squeeze

operator transforms the photonic amplitude operators as â� = Ŝ(ξ)âŜ†(ξ) = µâ + νâ† and

â�† = Ŝ(ξ)â†Ŝ†(ξ) = ν∗â + µâ† where µ = cosh |ξ| and ν = eiϕν sinh |ξ| [see Eqs. (5.18) and

(5.19)]. If we expand D̂(β) in a Taylor series with respect to â and â† and insert identity

operators Ŝ(ξ)Ŝ†(ξ) = Î between all operator products, it is easy to see that Ŝ†(ξ)D̂(β)Ŝ(ξ)
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= D̂(βµ+ β∗ν) and hence

W (α) =
1

π2

�

d2β eαβ∗−α∗βe−
1

2
�βµ+β∗ν�2 . (7.6)

Assuming ξ ∈ � and performing the final integration yields (α = α� + iα��)

W (α) =
2

π
exp

�

−2

�
α�2

e−2ξ
+

α��2

e2ξ

��

. (7.7)

The Wigner function (7.7) is again a Gaussian function, but this time centred at the origin

of phase space (see Fig. 8). In contrast to Eq. (7.5) it is not rotationally symmetric but
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FIG. 7: Wigner function of a coherent state with

α0 = 1 + i.
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FIG. 8: Wigner function of a squeezed vacuum

state with ξ = 1.

rather a product of two Gaussian functions with widths e−2ξ (along the real axis in phase

space) and e2ξ (along the imaginary axis). This justifies the naive phase space picture for

Gaussian states. However, number states and other non-Gaussian states cannot sensibly be

described by the naive picture, and a thorough analysis of the Wigner function is needed.

Calculation of expectation values using Wigner functions:

We can use the Wigner function as in classical probability theory to compute expectation

values of (symmetrically ordered) operators as

�Ô(â� â†)�sym =

�

d2αO(α� α∗)W (α) . (7.8)

As an example, we take the operator Ô(â� â†) to be the variance of the quadrature operator

x̂(ϕ), Ô(â� â†) = [Δx̂(ϕ)]2 which, as we have previously see, is proportional to the variance

of the electric-field strength. Since �[Δx̂(ϕ)]2�= �x̂2(ϕ)�−�x̂(ϕ)�2, we have to compute

�Ô(â� â†)�sym =
�
�â2�e2iϕ + �(â†)2�e−2iϕ + �ââ† + â†â�

�
−

�
�â�eiϕ + �â†�e−iϕ

�2
. (7.9)
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First, let us look at the coherent state |α0� whose Wigner function is given by Eq. (7.5).

The necessary integrations are therefore Gaussian integrals of the form

Imn =
2

π

�

d2ααmα∗ne−2�α−α0�2 � (7.10)

with which we can rewrite Eq. (7.9) as

�Ô(â� â†)�sym =
�
I20e

2iϕ + I02e
−2iϕ + 2I11

�
−

�
I10e

iϕ + I01e
−iϕ

�2
. (7.11)

Using I10 = α0, I01 = α∗
0, 2I11 = 1 + 2|α0|

2, I20 = α2
0, and I02 = α∗2

0 , we find that

�α0|[Δx̂(ϕ)]2|α0� = 1 � (7.12)

which is, apart from the factor ω2|Ak(r)|
2, just Eq. (5.13).

As a second example, we consider the squeezed vacuum state |ξ� whose Wigner function

(7.7) is also a Gaussian. The relevant integrals are now

Jmn =
2

π

�

d2ααmα∗n exp

�

−2

�
α�2

e−2ξ
+

α��2

e2ξ

��

. (7.13)

Without calculation, we know that J10 = J01 = 0 because the Wigner function is centred at

the origin in phase space. The other relevant integrals are 2J11 = cosh 2ξ and J20 = J02 =

−1
2
sinh 2ξ. Combining these integrals, we obtain

�ξ|[Δx̂(ϕ)]2|ξ� = cosh 2ξ −
1

2
sinh 2ξ

�
e2iϕ + e−2iϕ

�
� (7.14)

which is seen to depend both on the squeezing parameter ξ and on the phase ϕ. The

minimum of Eq. (7.14) is obtained for ϕ = 0, and the maximum for ϕ = π/2 with the values

�ξ|[Δx̂(0)]2|ξ� = e−2ξ � (7.15)

�ξ|[Δx̂(π
2
)]2|ξ� = e2ξ � (7.16)

which is exactly what we claimed in an earlier lecture. In most cases, and in particular for

Gaussian states, it turns out to be simpler to study expectation values using the Wigner

function than by direct calculation.
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