
Lecture 3: Casimir effect

• Casimir force between parallel plates — heuristic arguments

• Exact calculation

Casimir force between parallel plates — heuristic arguments: Earlier, we have ar-

gued that the infinite energy contained in the quantized free electromagnetic field does not

have any consequence other than the relocation of the origin of the energy scale. However,

in confined geometries with a mode expansion different from that in free space, there will be

an effect known as the Casimir effect. The simplest situation in which the Casimir effect can

be studied is between two parallel plates with lateral size L that are separated by a distance

d � L (see Figure 2). In order to calculate the vacuum energy between these plates, we

first have to establish the mode structure of the electromagnetic field.
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FIG. 2: Two perfectly conducting plates of lateral dimension L are separated by a small distance

d � L. The boundary conditions imply a restriction of modes as shown in the figure on the right.

Assuming that the plates are perfectly conducting, they impose boundary conditions in

such a way that the mode functions vanish on the surface of the plates. In particular, the

wave vector perpendicular to the plate surface can take only discrete values kz = nπ/d

(n = 0� 1� 2� . . .). This means that the number of modes that are confined in the space

between the plates depends on their separation.

Imagine now a situation in which the plates are separated by a distance d, and let us

call the ground-state energy of this configuration E(d). Now we separate the plates by a

further amount δd. The corresponding ground-state energy E(d + δd) has now increased

because more modes have been made available that can contribute to the energy. But this
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means that the minimal energy configuration is the one in which both plates have vanishing

separation, i.e. there exists an attractive vacuum force.

We can even estimate the strength of that force by estimating the ground-state energy

in the space between the plates in the following way. The ground-state energy must be

proportional to the enclosed volume (L2d), and the summation (or integration) over all

allowed wave numbers effectively reaches down to values on the order of 1/d. Thus,

E(d) ∝ (L2d)

Λ�

1/d

k2dk[�ω(k)] = �cL2d

Λ�

1/d

k3dk ∝ �cL2

�

dΛ4 −
1

d3

�

. (3.1)

Here, the integral has been cut off at an upper wave number Λ to make the result finite, and

we have used that ω = kc. Hence, the force per unit area on the plates, F = F/L2, must be

F ∝ −
�c

d4
. (3.2)

This is an attractive force that falls off very quickly as d−4 and is therefore only relevant at

very small distances. For example, for d = 1µm we find that F ∝ −0.03 Nm−2, which is

correct upto a numerical factor that we will compute next.

Exact calculation: Of course, our heuristic arguments do not give the exact expression

for the Casimir force. Neither does it deal with the divergence as the cut-off wave number

becomes larger. We therefore need a more elaborate calculation.

The total zero-point energy is

E(d) =
�

α

1

2
�ωα =

�c

2

�

α

|kα| =
�c

2

�

L2
d2k�
(2π)2

�

|k�|+ 2

∞�

n=1

�

k2

� +
n2π2

d2

�1/2
�

. (3.3)

Here we have used the fact that for each wave vector there are two transverse polarization

modes, except for kz = 0 in which case there is only one independent mode. Note that we

have written the summation over the transverse modes in integral form which is allowed if

the size of the plates can be made arbitrarily large.

The zero-point energy computed in Eq. (3.3) is, of course, infinite. In order to make sense

out of it, we subtract the contribution of the free quantized field modes in the same volume,

E0 =
�c

2

�

L2
d2k�
(2π)2

∞�

−∞

d
dkz

2π
2
�
k2

� + k2
z =

�c

2

�

L2
d2k�
(2π)2

∞�

0

dn 2

�

k2

� +
n2π2

d2
. (3.4)

Needless to say, the energy in Eq. (3.4) is also infinite. Introducing polar co-ordinates for

the transverse wave vector, we find that the energy difference per unit surface area of the

11



plates is

� =
E(d)−E0

L2
=

�c

2π

∞�

0

k dk

�

k

2
+

∞�

n=1

�

k2 +
n2π2

d2
−

∞�

0

dn

�

k2 +
n2π2

d2



 . (3.5)

This integral still seems to diverge for large values of k. The trick is now to effectively

cut off the integral above a certain value k > kmax and remove the regularization only at

the end of the calculation. Physically, this can be justified by noting that for very high

frequencies (much larger than the plasma frequency of the plate material) the plates are

effectively transparent. We will therefore introduce a cut-off function f(k) with the following

properties:

f(k) =






1 � k < kmax

0 � k � kmax

. (3.6)

With the change of variable to u = d2k2/π2, we obtain

� = �c
π2

4d3

∞�

0

du

�√
u

2
f

�π

d

√
u
�

+
∞�

n=1

√
u + n2f

�π

d

√
u + n2

�

−

∞�

0

dn
√

u + n2f
�π

d

√
u + n2

��

. (3.7)

Now we introduce a function

F (n) =

∞�

0

du
√

u + n2f
�π

d

√
u + n2

�
(3.8)

with which we can write Eq. (3.7) as

� = �c
π2

4d3



1

2
F (0) +

∞�

n=1

F (n)−

∞�

0

dn F (n)



 . (3.9)

The expression in brackets can be computed using the Euler–MacLaurin resummation

formula which states that

1

2
F (0) +

∞�

n=1

F (n)−

∞�

0

dn F (n) = −
1

2�
B2F

�(0)−
1

4�
B4F

���(0) + . . . (3.10)

where Bn are the Bernoulli numbers with B2 = 1/6, B4 = −1/30. Re-writing the function

F (n) as

F (n) =

∞�

n2

du
√

uf
�π

d

√
u
�

� F �(n) = −2n2f
�nπ

d

�
� (3.11)

12



we see that F ���(0) = −4, and all other derivatives vanish because of the assumption that

the derivatives of f vanish at the origin.

Finally, insering this result into Eq. (3.7) gives

� =
�cπ2

d3

B4

4�
= −

π2

720

�c

d3
. (3.12)

Note that the cut-off function does not appear in this final result. This means that our

calculation is in fact independent of it. The force per unit area acting on the plates is then

F = −
∂�

∂d
= −

π2

240

�c

d4
. (3.13)

Equation (3.13) is now the exact result. Inserting the distance d = 1 µm as above, we now

find that F = −1.3 · 10−3 Nm−2.

The Casimir effect was first predicted in 1948 [H.G.B. Casimir, Proc. K. Ned. Akad.

Wet. 51, 793 (1948)], but successfully confirmed only as late as 1958 [M.J. Spaarnay, Physica

24, 751 (1958)]. In this experiment, two parallel plates of lateral size L = 5 cm were held

1 µm apart which, by Eq. (3.13), results in an attractive force of F = −3.3 µN which is tiny,

indeed. Current high-precision experiments are performed with experimental set-ups such

as that depicted in Fig. 3.

FIG. 3: Experimental set-up for measuring Casimir forces between a sphere and a plate. Applying

a voltage to the piezo changes the distance a between the two objects.
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