
Lecture 23: Effective interaction Hamiltonians

• Effective interaction Hamiltonians

• Effective squeezing operator, parametric down-conversion

Effective interaction Hamiltonians: We will go back to the question of effective in-

teraction Hamiltonians and find out more about atom-light interactions beyond the linear

approximation that led us to the optical Bloch equations. We have already seen in connec-

tion with the Jaynes–Cummings model in cavity QED that in certain limits, in this case the

dispersive limit where the detuning is assumed to be large compared to the n-photon Rabi

frequency, the time evolution operator can take rather simple forms. In the dispersive limit,

it reads [Eq. (21.6)]
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The interaction part is, for small times t, given by
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The last term can be included in the free Hamiltonian and amounts to a shift of the excited

state (Stark effect) whereas the second term stems from an effective interaction Hamiltonian

Ĥeff =
�g2

δ
â†âσ̂z . (23.3)

This Hamiltonian is trilinear in all operators and as such does not appear in the original

Jaynes–Cummings Hamiltonian.

We will now return to the electric-dipole interaction Hamiltonian for multi-level atoms

[Eq. (15.5)]
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where we defined the coupling strengths gij�λ = ωijdij ·Aλ(rA)/(i�). Heisenberg’s equations

of motion for the atomic and photonic operators are then
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˙̂σij = iωijσ̂ij − i
�

k

�

λ

�
(gjk�λσ̂ik − gki�λσ̂kj) âλ +
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â†λ

�
(23.6)

89



(note that [σ̂ij � σ̂i�j�] = δji�σ̂ij� − δij�σ̂i�j). The formal solution to Eq. (23.6) is then
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Up until now, we have merely repeated some of the derivations that led to the optical

Bloch equations, only for multilevel atoms. Note that we have not made any rotating-wave

approximation yet.

Suppose now that the incoming light contains waves of only three frequencies that add

up as ω1 = ω2 + ω3, none of which is resonant with any atomic transition (see Figure 31).

Iterating Eq. (23.7) once more and inserting the result into Eq. (23.5), we obtain, amongst
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FIG. 31: A multilevel atom interacts non-resonantly with light of only three distinct frequencies.
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The dropped terms contain either atomic operators at the initial time or photonic creation

operators which we neglect for the following reason. Suppose we let λ = 1 and we perform

the rotating-wave approximation (RWA) in which we keep all terms on the rhs of Eq. (23.8)

that are resonant with the lhs, i.e. that evolve approximately as e−iω1t. Since ω1 = ω2 + ω3,
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the time evolution can only come from the photonic operators âν(t
��)âµ(t

�) (µ� ν = 2� 3),

and all the time evolutions of the atomic operators have to cancel out. The only atomic

operators that are allowed are the diagonal projectors σ̂ii. Hence, the equation of motion

for the photonic operator can be brought into the form

˙̂a1(t) = −iω1â1(t)− i
�

i

Gi�23σ̂ii(t)â2(t)â3(t) � (23.9)

where the new effective coupling constants Gi�23 are rather complicated functions (sums and

products) of the original couplings gij�λ.

Effective squeezing operator, parametric down-conversion: The structure of the ef-

fective equation of motion (23.9) is such that it could have been derived from the effective

Hamiltonian

Ĥeff = �â†1â2â3

�

i

Gi�23σ̂ii + h.c. . (23.10)

From the same Hamiltonian (23.10) we find that ˙̂σii = 0, so that the atomic variables can be

completely eliminated from the equations of motion. If the atom was initially in its ground

state, it will remain there for all times, and the effective Hamiltonian takes the even simpler

form

Ĥeff = �κâ†1â2â3 + h.c. . (23.11)

This Hamiltonian describes the process of sum-frequency generation in which two light modes

of frequencies ω2 and ω3 combine to a light mode at the sum frequency ω1 = ω2 + ω3. The

atomic degrees of freedom do not appear explicitly in (23.11), only in the effective coupling

constant κ.

If we furthermore assume that the light mode with frequency ω1 has been prepared in a

strong coherent state |α� so that its operator character can be neglected, and if we assume

that ω2 = ω3, we arrive at the parametric approximation with an effective Hamiltonian

Ĥeff = �κα∗1â
2 + h.c. . (23.12)

The unitary time evolution generated by this Hamiltonian is

Û(t) = e−
i
�

Ĥeff t = e(−iκα∗
1
â2−iκ∗α1â†2)t (23.13)

which, letting κ �→ iκ, is equivalent to the squeezing operator Ŝ(ξ) [Eq. (5.17)] with ξ =

2κα1t. We can therefore generate squeezed light by interacting with atomic ensembles in the

strongly dispersive regime in which the atoms remain in their ground states for all times.
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In nonlinear optics, the derivation of effective Hamiltonians is performed in a similar

way. The main difference is that one does not start with individual atoms but usually

with a semi-classical theory in which a nonlinear dielectric material (the atomic ensemble

in our case) is described by phenomenological susceptibilities χ(2) which take the place of

the (microscopic) coupling constant κ. Typical examples of crystals with a non-vanishing

χ(2) nonlinear coefficient are Barium titanate BaTiO3, Lithium niobate LiNbO3, and KDP

KH2PO4. The process described by the Hamiltonian (23.12) is known as parametric down-

conversion which, in the low-intensity regime, leads to the production of correlated single-

photon pairs with entangled polarizations.

FIG. 32: Parametric down-conversion from a BBO crystal. In the points of intersection of the two

cones the quantum state of the photons is exactly a maximally entangled state in the polarization

basis.

92



Lecture 24: Optical harmonic generation �frequency-doubling)

• Hamiltonian description of optical harmonic generation

• Squeezing in optical harmonic generation

Hamiltonian description of optical harmonic generation: We have seen in the pre-

vious lecture that off-resonant atom-light interactions can lead to an effective Hamiltonian

of the form [see Eq. (23.11)]

Ĥeff = �κâ†1â2â3 + h.c. (24.1)

where the coupling constant κ depends on the details of the atom-light coupling (dipole

moments, transition frequencies etc.). The process of optical harmonic generation is one of

the best known examples in nonlinear optics. Here a monochromatic light beam of frequency

ω1 incident on a χ(2) nonlinear medium generates light at twice the frequency, ω2 = 2ω1 (see

Fig. 33). Hence, we can describe the evolution of the electromagnetic field at these two
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FIG. 33: Schematic description of second-harmonic generation. The relevant light frequencies are

far away from any atomic transition so that the effective description as a nonlinear process holds.

frequencies by the Hamiltonian
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1

2
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+ �ω2

�

n̂2 +
1

2

�

+ �κ(â†21 â2 + â†2â
2
1) . (24.2)

From the Hamiltonian (24.2) we find immediately that the combination n̂1+2n̂2 is a constant

of motion, i.e. [n̂1 + 2n̂2� Ĥ] = 0. This means that for every emitted harmonic photon of

frequency ω2 two fundamental photons of frequency ω1 have to be absorbed. Therefore, the

process of harmonic generation conserves energy, but not photon numbers.

We will now try to solve the time evolution of the photonic amplitude operators for short

interaction times. To do so, we split up the fast time evolution and introduce slowly varying
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amplitude operators as usual: â1 = e−iω1tˆ̃a1 and â2 = e−iω2tˆ̃a2. Heisenberg’s equations of

motion for the slowly varying amplitude operators are (we omit the˜sign again)

˙̂a1 =
1

i�

�
â1� Ĥ

�
+

∂â1

∂t
= −2iκâ†1â2 � (24.3)
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+
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1 . (24.4)

The second time derivatives are computed similarly as
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2

�
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The equations of motion are once again coupled differential equations that have no an-

alytic solution. However, we can seek a solution for very short interaction times by Taylor

expanding around the initial time t = 0. The interaction time is more or less the propagation

time through the nonlinear medium, such an approximation can be justified. The Taylor

expansion leads to

â1(t) ≈ â1(0) + t ˙̂a1(0) +
t2

2
¨̂a1(0) + . . .

= â1(0)− 2i(κt)â†1(0)â2(0) + 2(κt)2
�
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n̂1(0)

2

�

â1(0) + . . . � (24.7)

â2(t) ≈ â2(0) + t ˙̂a2(0) +
t2

2
¨̂a2(0) + . . .

= â2(0)− i(κt)â2
1(0)− 2(κt)2

�
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1

2

�

â2(0) + . . . (24.8)

where we explcitly used the first and second derivatives. The expressions are valid as long

as �n̂1(0)�(κt)2 � 1. Since we know the time evolution of the (slowly varying) photonic am-

plitude operators in the Heisenberg picture, we can construct all other composite operators

like photon numbers from them and compute their expectation values.

Let us assume that the pump field at frequency ω1 is prepared in a coherent state with

amplitude α, and the harmonic mode is initially empty. Hence, the initial state of both

modes at time t = 0 is |ψ(0)� = |α1� 02�. For the expectation values of the photon number

operators we obtain

�n̂1(t)� = �ψ(0)|â†1(t)â1(t)|ψ(0)� ≈ |α|2 − 2(κt)2|α|4 + . . . � (24.9)

�n̂2(t)� = �ψ(0)|â†2(t)â2(t)|ψ(0)� ≈ (κt)2|α|4 + . . . � (24.10)
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showing that the intensity of the generated second harmonic field grows quadratically in

time (�n̂2(t)� ∝ t2) as well as with the square of the pump intensity �n̂2(t)� ∝ (|α|2)2.

Similarly, one can compute the photon-number variances �(Δn̂1)
2� and �(Δn̂2)

2�. Before

we state the results, let us briefly go back to the definition of the coherent states. Recall

that their photon-number statistics is Poissonian, with the variance equal to their mean,

�α|(Δn̂)2|α� = �α|n̂2|α� − �α|n̂|α�2 = �α|n̂|α� = |α|2. Any state with a narrower, sub-

Poissonian, photon-number distribution is nonclassical. Without going into the details of

the calculations (you can check them yourself), the second moments of the photon numbers

are

�n̂2
1(t)� ≈

�
|α|2 + |α|2

� �
1− 4(κt)2|α|2

�
+ . . . � (24.11)

�n̂2
2(t)� ≈ (κt)2|α|4

�
1 + (κt)2|α|2

�
+ . . . � (24.12)

from which it follows that

�(Δn̂1(t))
2� = �n̂2

1(t)� − �n̂1(t)�
2 = �n̂1(t)� − 2(κt)2|α|4 + . . . � (24.13)

�(Δn̂2(t))
2� = �n̂2

2(t)� − �n̂2(t)�
2 = �n̂2(t)�+ . . . (24.14)

Therefore, the photon-number statistics of the harmonic field is close to Poissonian, and the

quantum state close to a coherent state. On the other hand, the photon-number statistics

of the pump field is narrower than the original Poissonian distribution, i.e. sub-Poissonian.

Squeezing in optical harmonic generation: Generically, most nonclassical features are

equivalent to or caused by other nonclassical features. In the situation considered here, the

pump field becomes also squeezed by the nonlinear interaction. Recall that our criterion for

squeezing that the fluctuations of the electric field has to drop below its vacuum value. This

is equivalent to saying that the quadrature variance has to drop below 1. The quadrature

operator was defined as x̂(ϕ) = âeiϕ + â†e−iϕ (see Lecture 5). Using the solution (24.7), one

finds (again without proof) that

�x̂1(ϕ)� = (αeiϕ + α∗e−iϕ)
�
1− (κt)2|α|2

�
+ . . . � (24.15)

�x̂2
1(ϕ)� =

�
α2e2iϕ + α∗2e−2iϕ

� �
1− 2(κt)2|α|2

�
+ 2|α|2

�
1− 2(κt)2|α|2

�
+ 1

−(κt)2
�
α2e2iϕ + α∗2e−2iϕ

�
+ . . . (24.16)

so that the quadrature variance becomes

�(Δx̂1(ϕ))
2� = 1− 2(κt)2|α|2 cos(ϕ + argα) +O(κt)3 . (24.17)
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This means that, depending on the phase of the coherent amplitude of the pump, one can

always find a direction ϕ in phase space in which the pump field is squeezed.

Since both sub-Poissonian statistics and squeezing are purely quantum mechanical phe-

nomena, we know that optical harmonic generation cannot be described using purely clas-

sical nonlinear optics. Most of the interesting phenomena would be missed by a classical

description.
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Lecture 25: Parametric down-conversion

• Solution of the equations of motion

• Photon statistics

Hamiltonian and equations of motion: Parametric down-conversion is a nonlinear pro-

cess in which a pump photon of frequency ω0 converts into two photons with frequencies

ω1 and ω2, commonly called signal and idler photons. Due to energy conservation, the re-

lation ω0 = ω1 + ω2 must hold. Similarly, as the photons carry momentum, the so-called

phase-matching condition k0 = k1 + k2 must be satisfied, i.e. the photon momentum is

conserved.

The Hamiltonian of this process is, using the notation of the effective interaction Hamil-

tonian (23.11),

Ĥ =

2�

i=0

�ωi

�

n̂i +
1

2

�

+ �κ
�
â†0â1â2 + â†1â

†
2â0

�
. (25.1)

The combination 2n̂0+ n̂1+ n̂2 is again a constant of the motion, i.e. [2n̂0 + n̂1 + n̂2� Ĥ] = 0.

In order to find the time evolution of the photonic amplitude operators, we could make

in principle the same Taylor expansion for short interaction times as we did for optical

harmonic generation. However, if it justified to assume that the pump field is sufficiently

intense such that it can be treated as a classical field with complex amplitude α0e
−iω0t, the

Hamiltonian simplifies to

Ĥ =

2�

i=1

�ωi

�

n̂i +
1

2

�

+ �κ
�
â1â2α

∗
0e

iω0t + â†1â
†
2α0e

−iω0t
�

. (25.2)

The new constant of the motion is n̂1− n̂2 meaning that signal and idler photons are always

created together.

As before, we introduce slowly-varying amplitude operators as âi(t) = e−iωitˆ̃ai(t) where

we omit the˜sign straightaway and write Heisenberg’s equations of motion for the slowly-

varying quantities as

˙̂a1 = −iκα0â
†
2e

i(ω1+ω2−ω0)t � (25.3)

˙̂a2 = −iκα0â
†
1e

i(ω1+ω2−ω0)t . (25.4)

Using energy conservation, the equations of motion simplify further to

˙̂a1 = −iκα0â
†
2 � ˙̂a2 = −iκα0â

†
1 . (25.5)
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Differentiating once more leads to the uncoupled equations

¨̂a1 = κ2|α0|
2â1 � ¨̂a2 = κ2|α0|

2â2 � (25.6)

with the solutions

â1(t) = â1(0) cosh(κ|α0|t)− iei arg α0 â†2(0) sinh(κ|α0|t) � (25.7)

â2(t) = â2(0) cosh(κ|α0|t)− iei arg α0 â†1(0) sinh(κ|α0|t) . (25.8)

Photon statistics: Instead of trigonometric function, the solutions contain hyperbolic

functions so that we can expect a strong increase in the production of photons with time. In-

deed, if we assume that both signal and idler modes where initially empty, |ψ(0)� = |01� 02�,

the photon-number expectation values are

�n̂1(t)� = �n̂2(t)� = sinh2(κ|α0|t) . (25.9)

For short interaction times, κ|α0|t � 1, the average number of downconverted photons

grows quadratically in time, because sinh x
x�1
≈ x. That is, initially the process is driven by

spontaneous emission of signal and idler photons. For longer times, however, the average

number of photons grows exponentially (sinhx
x�1
≈ ex/2) and the process is dominated by

stimulated emission of photons. At this point one needs to make sure that the approximation

of constant pump amplitude is still valid. The above solution only holds when the pump

field is not substantially depleted by the down-conversion process.

From the solutions (25.7) and (25.8) it is also easy to find the photon-number variance

with the result that

�(Δn̂1(t))
2� = �(Δn̂2(t))

2� = sinh4(κ|α0|t) + sinh2(κ|α0|t) . (25.10)

Going back to the Hamiltonian (25.2), we find that it generates a time evolution operator

Û = e−iĤt/� that looks similar to the squeeze operator Ŝ(ξ) introduced in Lecture 5, with

ξ = −2iκtα∗0e
iω0t. We will now verify that the downconverted photons are indeed squeezed.

Note, however, that the resulting quantum state consists of two separate modes of the

electromagnetic field, hence our squeezing criterion has to be generalized. The individual

modes will in general not be squeezed, only the quantum-mechanical correlations between

the modes will cause two-mode squeezing. From the correspondence between quantum states
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and Wigner functions it is enough to check that the Wigner function shows features in phase

space that are narrower than those of a vacuum state.

In connection with the Mach–Zehnder interferometer we have already used the covariance

matrix V whose entries are the (symmetrically ordered) second-order quadrature moments

�(λ̂iλ̂j + λ̂jλ̂i)/2� where λ̂ = (x̂1� p̂1� x̂2� p̂2)
T . In the present situation, after a suitable local

rotation, the covariance matrix can be brought into the canonical form

V =

�








c 0 s 0

0 c 0 −s

s 0 c 0

0 −s 0 c










(25.11)

with c = cosh(2κ|α0|t) and s = sinh(2κ|α0|t). Its (doubly degenerate) eigenvalues are

e±2κ�α0�t, meaning that there are two directions in the four-dimensional phase space of our

two light modes in which the Wigner function is exponentially narrower than its vacuum

counterpart. Hence, the down-converted photons are indeed squeezed.

Generation of entangled photon pairs: For very short interaction times, κ|α0|t � 1,

we can a simple expression for the quantum state of the down-converted photons. Taylor

expanding the unitary evolution operator to first order in the interaction time leaves us with

Û(t) = e−iĤt/� ≈ 1−
it

�
Ĥ +O(t2) (25.12)

which, acting on the initial vacuum state in the interaction picture (i.e. neglecting the free

time evolution and concentrating on the interaction) gives

Û(t)|01� 02� ≈ |01� 02� − iκα0t|11� 12�+O(t2) . (25.13)

That is, apart from a very high probability of doing nothing at all, parametric down-

conversion generates perfectly correlated (entangled) photon pairs that can be used for

quantum information processing or metrology.

Generation of heralded single photons: The output of the parametric down-conversion

consists mostly of vacuum and the probability of generating an entangled photon pair is

small, p = |κα0t|
2 � 1. The probability of producing two photons in each mode is almost

completely negligible. Moreover, signal and idler photons are completely correlated in fre-

quency, wavevector, polarization and are produced in the same spatiotemporal mode. This
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high degree of correlation makes them suitable for generating single photons in well-defined

quantum states. We have previously seen that producing a photon via atomic decay is a

probabilistic process with no success guarantee. In particular, spontaneous decay does not

provide a trigger signal indicating that the photon has been released.

In parametric down-conversion such a trigger signal exists: the idler photon. The idea

behind a ‘heralded’ single photon source is to make use of the quantum correlations in the

output of parametric down-conversion. One places a photon detector in the path of the idler

photon and waits until it has registered a photon. At the same moment one can be sure

that the signal mode contains exactly one photon in the spatiotemporal mode selected by

the detector. Such heralding schemes are widely used in quantum information processing

FIG. 34: Experimental scheme for the generation of six-photon entangled states for quantum

information processing. After C.-Y. Lu, X.-Q. Zhou, O. Gühne, W.-B. Gao, J. Zhang, Z.-S. Yuan,

A. Goebel, T. Yang, and J.-W. Pan, Nature Physics �, 91 (2007).

with photons (see Fig. 34).
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