
Lecture 1: Classical electrodynamics — Maxwell’s equations

• Maxwell’s equations in vacuum, potentials, Coulomb gauge

• Mode decomposition

Maxwell’s equations in vacuum: Quantum optics is, as its name suggests, the quantum

theory of light. In order to describe the wave properties of light, we first need to look at

Maxwell’s equations. The classical electromagnetic field in free space is described by the

following set of equations:

� ·B(r� t) = 0 (Gauß’ law) � (1.1)

� ·D(r� t) = 0 (Coulomb’s law) � (1.2)

�×E(r� t) = −Ḃ(r� t) (Faraday’s law) � (1.3)

�×H(r� t) = Ḋ(r� t) (Amperé’s law) . (1.4)

In order to fix terminology, we will call the fields appearing in Eqs. (1.1)—(1.4) the electric

field [E(r� t)], the displacement field [D(r� t)], the induction field [B(r� t)], and the magnetic

field [H(r� t)]. These fields are not independent of each other. They are related by some

constitutive relations, which for the electromagnetic field in free space read

D(r� t) = ε0E(r� t) � (1.5)

H(r� t) =
1

µ0

B(r� t) . (1.6)

Here, ε0 and µ0 are the vacuum permittivity and permeability, respectively. The are related

to the speed of light c by ε0µ0 = 1/c2.

Vector and scalar potentials: Our first task will be to solve Maxwell’s equations (1.1)—

(1.4). This is generally done by introducing a vector potential A(r� t) and a scalar potential

φ(r� t). Recall that there are two important vector identities:

� · (�×V) ≡ 0 ∀ vector functions V (Gauß’ theorem) � (1.7)

�× (�S) ≡ 0 ∀ scalar functions S (Stokes’ theorem) . (1.8)

Gauß’ theorem, Eq. (1.7), can be used to solve Eq. (1.1) by introducing the vector potential

as

B(r� t) = �×A(r� t) . (1.9)
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Remember that this is just an identity. Because of Gauß’ theorem, the induction field can

always be written as the curl of some other function. If we now insert the definition (1.9)

into Faraday’s law (1.3) and write it as � × [E(r� t) + Ȧ(r� t)] = 0, we can use Stokes’

theorem (1.8) and define the scalar potential as

E(r� t) = −Ȧ(r� t)−�φ(r� t) . (1.10)

Because the introduction of the potentials is just a mathematical trick to simplify Maxwell’s

equations, the potentials have no physical meaning whatsoever. The physical quantities are

always the electromagnetic fields.

There are two more of Maxwell’s equations to satisfy, Coulomb’s law (1.2) and Amperé’s

law (1.4). Using the constitutive relations (1.5) and (1.6), we obtain the following wave

equations for the potentials:

� ·D(r� t) = 0⇒ −ε0

�
Δφ(r� t) + � · Ȧ(r� t)

�
= 0 � (1.11)

�×H(r� t) = Ḋ(r� t)⇒ �×�×A(r� t) +
1

c2
Ä(r� t) = −

1

c2
�φ̇(r� t) . (1.12)

The name wave equation will become clear shortly.

Gauge freedom: The two wave equations are still very complicated, because they form

a coupled set of partial differential equations that is very hard to solve. But they can be

substantially simplified by noting that the potentials are actually not uniquely defined. The

definition of the vector potential (1.9) and Stokes’ theorem (1.8) imply that the transformed

vector potential A�(r� t) = A(r� t) + �g(r� t), where g(r� t) is an arbitrary scalar function,

does not change the induction field B(r� t). If we insert the transformed vector potential

into Eq. (1.10), we see that we have to transform the scalar potential simultaneously as

φ�(r� t) = φ(r� t) − ġ(r� t) in order not to change the electric field E(r� t). This freedom in

choosing a function g(r� t) is called gauge freedom.

Coulomb gauge: In quantum optics, one frequently uses the Coulomb gauge where one

chooses a gauge function g(r� t) such that

� ·A(r� t) = 0 . (1.13)

This condition states that the vector potential is a transverse vector function. One can see

that easily by Fourier transforming Eq. (1.13) to

ik · Ã(k� t) = 0 � (1.14)
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which is the familiar transversality condition for a wave with wavevector k (see Fig. 1).

Moreover, because of Eq. (1.11), the scalar potential vanishes in the Coulomb gauge. The
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FIG. 1: In the Coulomb gauge, E and B are both perpendicular to the propagation direction.

second wave equation, Eq. (1.12), then leads to the wave equation for the vector potential

ΔA(r� t)−
1

c2
Ä(r� t) = 0 . (1.15)

Here we have used the vector identity �× (�×V) = �(� ·V)−ΔV.

Add­on: Another frequently used gauge is the Lorenz gauge where a gauge

function g(r� t) is chosen such that

1

c2
φ̇(r� t) + � ·A(r� t) = 0 .

This gauge has the advantage that is preserves the relativistic invariance

of Maxwell’s equations. If we define the contravariant four-potential as

Aµ = (φ/c�A), this gauge condition can be written as ∂µA
µ = 0 [∂µ =

(∂t/c��)]. The wave equations (1.11) and (1.12) then decouple as

Δφ(r� t)−
1

c2
φ̈(r� t) = 0 � ΔA(r� t)−

1

c2
Ä(r� t) = 0 �

which can be written in four-vector notation as �Aµ = 0 [� = ∂ν∂
ν ].

Because quantum optics is a non-relativistic theory, we do not need relativistic invariance.
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Hence, from now on we will use the Coulomb gauge (1.13) in which the vector potential is

transverse and satisfies the wave equation (1.15).

Mode decomposition: The partial differential equation (1.15) obeyed by the vector po-

tential is solved by separation of variables, or mode decomposition, in which we seek to

separate the spatial dependence of the vector potential from its time dependence. In order

to do so, we rewrite Eq. (1.15) with a separation constant ω2
λ/c

2 as
��

Δ+
ω2

λ

c2

�

−

�
1

c2
∂2

∂t2
+
ω2

λ

c2

��

A(r� t) = 0 � (1.16)

and make a separation ansatz for the vector potential as

A(r� t) =
�

λ

Aλ(r)uλ(t) . (1.17)

Mode functions: The mode functionsAλ(r) are solutions to the scalar Helmholtz equation
�

Δ+
ω2

λ

c2

�

Aλ(r) = 0 . (1.18)

If we make the identification k2 = ω2
λ/c

2, we see that the possible solutions to the Helmholtz

equation in cartesian co-ordinates are plane waves eik·r. For every wave vector k, there are

two possible orthogonal polarizations with unit vectors eσ such that eσ · k = 0. Hence,

the sum over λ has in fact the following meaning:
�

λ

≡
2�

σ=1

�
d3k. Similarly, in other co-

ordinate systems, we obtain solutions in terms of (cylindrical or spherical) Bessel functions.

The possible solutions to the scalar Helmholtz equation and the meaning of the mode sum

are collected in the following table:

(x� y� z) : λ ≡ (σ�k)� Aλ(r) ≡ eσe
ik·r�

�

λ

≡

2�

σ=1

�

d3k

(ρ� φ� z) : λ ≡ (σ� n� kρ� kz)� Aλ(r) ≡ eσJn(kρρ)e
inφ+ikzz�

�

λ

≡

2�

σ=1

∞�

n=−∞

� ∞

0

dkρ

� ∞

−∞

dkz

(ρ� θ� φ) : λ ≡ (σ� kρ� l� m)� Aλ(r) ≡ eσjl(kρρ)Ylm(θ� φ)�
�

λ

≡

2�

σ=1

∞�

l=0

l�

m=−l

� ∞

0

dkρ

The temporal part of the Helmholtz equation reduces to the equation

üλ(t) + ω2
λuλ(t) = 0 � (1.19)

which is the differential equation for a harmonic oscillator with frequency ωλ, with the

solutions uλ(t) = e±iωλtuλ(0). This finally explains why the partial differential equation

satisfied by the vector potential is called a wave equation because its solutions are either

plane waves or Bessel waves.
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Lecture 2: Quantization of the free electromagnetic field

• classical Hamiltonian, harmonic oscillators

• photon creation and annihilation operators

Classical Hamiltonian: We will now use the mode decomposition of the classical vector

potential to find out its consequences for canonical quantization. For this purpose, we will

focus on the mode decomposition in cartesian coordinates,

A(r� t) =
�

σ

�
d3k

(2π)3/2
eσ e

ik·rukσ(t) . (2.1)

In order to ensure that the vector potential is real, we add its complex conjugate with the

condition ukσ(t) = u∗−kσ(t), and obtain

A(r� t) =
�

σ

�
d3k

(2π)3/2
eσ

�
ukσe

i(k·r−ωt) + u∗
kσe

−i(k·r−ωt)
�
. (2.2)

From classical electromagnetism we know that the energy stored in the electromagnetic

field, i.e. the classical Hamiltonian function, is

H =
1

2

�

d3r

�

ε0E
2(r� t) +

1

µ0
B2(r� t)

�

� (2.3)

where we have to express the electric field and the magnetic induction in terms of the vector

potential. Inserting (2.2) into the Hamiltonian (2.3), we find that

H = −
1

2

�

σ�σ�

��
d3r d3k d3k�

(2π)3

� �

ε0 (eσ · eσ�)ωω� +
1

µ0
(k× eσ) · (k

� × eσ�)

�

×

�

ukσe
i(k·r−ωt) − u∗

kσe
−i(k·r−ωt)

��

uk�σ�ei(k�·r−ω�t) − u∗
k�σ�e−i(k�·r−ω�t)

��

. (2.4)

Using the orthogonality of the polarization vectors eσ · eσ� = δσ�σ� and the relation (k× eσ) ·

(k× eσ�) = k2(eσ · eσ�), and integrating over r and k� yields

H = 2ε0

�

σ

�

d3k ω2|ukσ|
2 . (2.5)

Because the expansion coefficients ukσ are complex functions, we can split them into their

respective real and imaginary parts,

ukσ =
1

2
√
ε0

�
qkσ + i

pkσ

ω

�
�

u∗
kσ =

1

2
√
ε0

�
qkσ − i

pkσ

ω

�
�






qkσ =
√
ε0 (ukσ + u∗

kσ) �

pkσ = −iω
√
ε0 (ukσ − u∗

kσ) .
(2.6)
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With these definitions, we find that the classical Hamiltonian can be rewritten as

H =
1

2

�

σ

�

d3k
�
p2
kσ + ω2q2

kσ

�
. (2.7)

In this way, we have converted the Hamiltonian function of the classical electromagnetic

field into an infinite sum over uncoupled harmonic oscillators with frequencies ω = |k|c.

Photon creation and annihilation operators: Since we just found that the electromag-

netic field, after Fourier transformation, is equivalent to a set of uncoupled harmonic oscil-

lators, we can use this information to quantize this field by quantizing each of the harmonic

oscillators. Hence, we replace the c-number functions qkσ and pkσ by operators q̂kσ and p̂kσ,

qkσ �→ q̂kσ � pkσ �→ p̂kσ � (2.8)

and postulate their equal-time commutation relations

[q̂kσ� p̂k�σ� ] := i�δ(k− k�)δσ�σ� . (2.9)

Let us now define non-Hermitian operators âσ(k) and â†σ(k) in analogy to the complex

expansion coefficients ukσ

âσ(k) =

�
ω

2�

�

q̂kσ +
ip̂kσ

ω

�

� (2.10)

â†σ(k) =

�
ω

2�

�

q̂kσ −
ip̂kσ

ω

�

(2.11)

With the commutation relations for the operators q̂kσ and p̂kσ, we find for the new operators

the equal-time commutation relation

�
âσ(k)� â

†
σ�(k

�)
�
= δ(k− k�)δσ�σ� . (2.12)

From the theory of the quantized harmonic oscillator, we know that the operators âσ(k)

and â†σ(k) destroy and create, respectively, quanta of energy �ω = �|k|c. That suggests

that they can be interpreted as annihilation and creation operators of excitations of the

electromagnetic field modes of wavevector k. These elementary field excitations are called

photons. We will justify this interpretation in a later lecture.

Meanwhile, we will rewrite both the quantized vector potential and the Hamiltonian in

terms of the new variables. For the vector potential in the Schrödinger picture, one finds

that

Â(r) =
�

σ

�
d3k

(2π)3/2

�
�

2ε0ω
eσ

�
eik·râσ(k) + e−ik·râ†σ(k)

�
. (2.13)
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In principle, we could use any other mode function Aλ(r) to write the vector potential as

Â(r) =
�

λ

�
Aλ(r)âλ +A

∗
λ(r)â

†
λ

�
. (2.14)

If we now write the Hamiltonian as Ĥ = 1
2

�

λ

(p̂2
λ + ω2

λq̂
2
λ) and replace the operators q̂λ

and p̂λ by the new variables âλ and â†λ,

q̂λ =

�
�

2ωλ

�
âλ + â†λ

�
� (2.15)

p̂λ =
1

i

�
�ωλ

2

�
âλ − â†λ

�
� (2.16)

we find that

Ĥ =
1

2

�

λ

�ωλ

�
âλâ

†
λ + â†λâλ

�
=

�

λ

�ωλ

�

â†λâλ +
1

2

�

(2.17)

where in the last equation we used the commutation relations (2.12) in the form [âλ� â
†
λ�] =

δλλ� . The Hamiltonian (2.17) implies the following equations of motion for the photonic

creation and annihilation operators

˙̂aλ =
1

i�

�
âλ� Ĥ

�
= −iωλâλ ⇒ âλ(t) = e−iωλtâλ � (2.18)

˙̂a†λ =
1

i�

�
â†λ� Ĥ

�
= iωλâ

†
λ ⇒ â†λ(t) = eiωλtâ†λ . (2.19)

Here we made the distinction between operators in the Heisenberg picture which carry time

dependence, and operators in the Schrödinger picture which coincide with their counterparts

in the Heisenberg picture at time t = 0. From the expansion of the vector potential (2.13)

we then realize that the photonic amplitude operators appear in combinations ei(k·r−ωt)âσ(k)

and e−i(k·r−ωt)â†σ(k). For this reason, the annihilation operator âσ(k) is associated with the

positive-frequency components of the electromagnetic field, and the creation operator with

negative-frequency components. Heisenberg’s equations of motion can be used to write the

operator of the electric-field strength as

Ê(r) = −
˙̂
A(r) = i

�

λ

ωλ

�
Aλ(r)âλ −A

∗
λ(r)â

†
λ

�
. (2.20)

Going back to the Hamiltonian (2.17) one realizes that, because of the commutation

relation (2.12), there appears a constant contribution to the total field energy,

Ĥ0 =
1

2

�

λ

�ωλ =
�c

2

�

σ

�
d3k

(2π)3/2
|k| . (2.21)
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Clearly, this contribution is infinitely large. Because it does not even contain any photonic

amplitude operators, this energy exist without any photon being present. Hence, this energy

relates to the vacuum energy which, one might say, is an artefact of the quantization proce-

dure. Should we be worried? Does this infinite energy have any measurable effect or does

it just relocate the point from which we measure relative photon energies? In most cases of

interest, this vacuum energy indeed does not play a role if one concentrates on the photons

only. We will see later that the presence of material objects or other boundary conditions

for the electromagnetic field will make the vacuum energy appear as a measurable quantity.

Some additional remarks on field quantization: The quantization procedure outlined

above is an example of a canonical quantization in which a system with infinitely many

degrees of freedom (a field) is converted into a set of uncoupled harmonic oscillators which

are then quantized. The commutation relations postulated for the creation and annihilation

operators (2.12) reflect themselves in specific commutation rules between the vector potential

and its associated canonical momentum.

The way canonical quantization works in field theories is by starting from a Lagrangian

which for electromagnetism in the Coulomb gauge reads

L =

�

d3rL =
1

2

�

d3r

�

ε0Ȧ
2(r� t)−

1

µ0

[�×A(r� t)]2
�

[this is the three-vector version of the relativistic four-vector Lagrangian density L =

−1/4F µνFµν with F µν = ∂µAν − ∂νAµ]. The canonical momentum field is derived by

functional differentiation (in the space of transverse vector fields) as

Π(r� t) =
δ̄L

δ̄Ȧ(r� t)
= ε0Ȧ(r� t) = −ε0E

⊥(r� t) .

Then, one postulates the canonical equal-time commutation relations between the vector

potential and its momentum field as

�
Â(r� t)� Π̂(r�� t)

�
= i�δ

⊥(r− r�)

where δ⊥(r− r�) denotes the transverse δ function (see mathematical supplement).
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Supplement to Lecture 2: Transverse and longitudinal δ functions

The correct mathematical definition of the (scalar) δ distribution is the following: Let

Φ be a test function, i.e. a continuously differentiable function that vanishes with all its

derivatives outside a compact set on the real axis [Φ ∈ C∞
0 (a� b)]. The δ distribution is a

functional over all test function Φ such that

(δ�Φ) = Φ(0) .

Sloppily speaking this means that the δ ‘function’ picks out the value of Φ at the origin.

Physicists usually write
∞�

−∞

dx δ(x)Φ(x) = Φ(0)

which looks similar to the formula above but is mathematically incorrect (it would be correct

if δ were a regular distribution). In any case, the δ function has a singular point support at

the origin. The same is true for the tensor-valued δ function which we define by

[δ(r)]ij = δijδ(r) .

Things change when we define the longitudinal tensor-valued δ function by

�
δ
�(r)

�
ij
≡ δ

�
ij(r) = ∂i∂j

1

4π|r|
.

Clearly, its support is over the whole real space and not just the origin. Moreover, we

see that it is longitudinal as it is actually the gradient of �(4π|r|)−1, and from the vector

identity (1.8) we then establish that �×δ�(r) ≡ 0. The transverse tensor-valued δ function

is then defined by the difference between the ordinary and the longitudinal δ functions,

δ
⊥(r) = δ(r)− δ

�(r) .

It is clearly transverse because we have subtracted the longitudinal part of the full δ function,

hence � · δ⊥(r) ≡ 0. Transverse and longitudinal δ function are used to define transverse

and longitudinal parts of vector functions V(r). They are defined as follows:

V⊥(r) =

�

d3r� δ⊥(r− r�)V(r�) �

V�(r) =

�

d3r� δ�(r− r�)V(r�) .

From the definitions of δ⊥(r) and δ�(r) it is clear thatV⊥(r) andV�(r) are indeed transverse

and longitudinal vector functions, respectively.
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